Длительное нахождение человека в условиях пониженных температур (0 ÷ -70 0С) [24] без соответствующей защитной одежды представляет опасность переохлаждения, которое способно вызвать отрицательные последствия для его здоровья [25, 26], отражается на его трудоспособности.
В целом организм человека - это саморегулирующая система, но ее возможности в сохранении температурного гомеостаза весьма ограничены биологическими особенностями строения тела и физиологического функционирования внутренних систем жизнеобеспечения человека. К условиям низких температур человек приспособился в основном за счет социальных факторов: жилья и одежды [27].
В среде с низкой, некомфортной температурой незначительное снижение теплопотерь тела человека происходит за счет уменьшения градиента температуры между поверхностью тела и среды в результате охлаждения рецепторов кожи, спазмирования под влиянием этого кровеносных сосудов и увеличения термического сопротивления тканей организма. С течением времени постепенно происходит адаптация организма человека к пониженным температурам [28].
Исследования [25, 29 - 31] показали, что у лиц, систематически находящихся на холоде, вырабатывается способность к акклиматизации, выражающаяся в большей подвижность стенок сосудов, позволяющая быстро восстанавливать нормальное кровоснабжение тканей. Однако при выполнении интенсивной физической нагрузки способность к акклиматизации не играет большой роли, т.к. в этом случае температура тела становится выше, дефицит тепла больше, а температура кожи, по отношению к состоянию покоя ниже [28, 32, 33]. Величина теплопродукции при этом может увеличиваться в шесть раз [25, 34].
В физиологических исследованиях [28, 34 - 36] установлено, что термостабильное состояние человека сохраняется при равновесии между теплообразованием и теплоотдачей. Теплопродукция организма человека зависит от физиологических факторов организма, физиологической активности и степени акклиматизации к холоду. Среднее значение теплопродукции человека в состоянии покоя равна 40-50 ккал/(м2∙час) [37].
На интенсивность тепловых потерь влияют процессы физиологической регуляции организма человека и факторы климата окружающей среды. Человек отдает в окружающую среду тепло, которое продуцирует сам и теряет в виде радиации пятью основными способами [28, 38]: кондукцией, конвекцией, радиационным излучением, дыханием, испарением пота. Вклад потерь тепла кондукцией при использовании теплозащитной одежды обычно незначителен и им пренебрегают. Конвективные потери зависят от температуры окружающей среды, скорости движения воздуха, конструкции теплозащитной одежды. Почти половина потерь тепла (43,9-59,1 %) [38, 28] происходит радиационным излучением. Потери тепла на нагревание воздуха обычно составляют 2-3 %, а при температуре -40 0С достигают 10% [39]. Потоотделение усиливается под воздействием теплового раздражения, эмоциональных стимулов, напряжения, волнения [40]. В результате, как отмечают исследователи [25, 28], основной вклад в интенсивность тепловых потерь вносят именно конвекция и радиационное излучение.
Низкие температуры окружающей среды оказывают влияние и на функционирование внутренних органов. При значительном охлаждении растет число тромбоцитов и эритроцитов в крови, увеличивается содержание холестерина, вязкость крови, что нарушает работу кровеносной системы и повышает возможность тромбообразования. Холод способствует возникновению различных сердечно-сосудистых патологий, приводит к вегетососудистой дистонии, обострению язвенной болезни, радикулита и ревматизма, обуславливает возникновение заболеваний органов дыхания: бронхита, пневмонии, тонзиллита [28, 41].
Если на начальных этапах адаптации к пониженным температурам преобладают острые воспалительные заболевания и обостряются уже имеющиеся патологические процессы, то через 3 - 5 лет в структуре заболеваемости начинают преобладать ишемическая болезнь сердца, артериальная гипертония, язвенная болезнь желудка и двенадцатиперстной кишки, а также различные нарушения со стороны эндокринной системы. Все эти заболевания являются следствием хронического стресса и связаны с глубокими перестройками метаболизма систем эндокринной регуляции, состоянием иммунологической реактивности [26, 42].
Внешнее проявление локального и общего охлаждения человека наблюдается как изменение его двигательной активности и реакции, нарушение общей координации и способности выполнять точные операции. Более глубокое воздействие холода на организм инициирует тормозные процессы в коре головного мозга, что может стать причиной возникновения различных форм травматизма. В результате, кроме потери здоровья человека, возрастают потери рабочего времени, связанные с временной утратой работоспособности.
При охлаждении человека для сохранения его работоспособности необходимо знать пределы переносимости холода организмом. На основании исследований теплообмена человека с окружающей средой [41] разработаны показатели допустимого теплового состояния человека (таблица 1.4).
Из таблицы видно, что увеличение физической активности способствует лучшей переносимости охлаждающего воздействия, несмотря на снижение средневзвешенной температуры кожи.
Таким образом, тепловое состояние человека определяется климатическими факторами, индивидуальными особенностями человека и теплозащитной одеждой. Диапазон возможной физиологической терморегуляции человека крайне ограничен, и защита его возможна лишь средствами специальной одежды. Обеспечение необходимого микроклимата в пододёжном слое и безопасного теплового состояния человека реализуется благодаря проектированию и созданию качественной и безопасной теплозащитной одежды.
Таблица 1.4 - Критерии допустимого теплового состояния человека (нижняя граница)
Показатель теплового состояния человека |
Энерготраты, Вт/м2 |
||||
69 |
87 |
113 |
145 |
177 |
|
1 |
2 |
3 |
4 |
5 |
6 |
Температура тела ректальная tp, 0С |
37,0 |
37,2 |
37,3 |
37,5 |
37,7 |
Средневзвешенная температура кожи tк, 0С |
32,0 |
31,5 |
31,1 |
30,0 |
29,0 |
Средняя температура тела tт, 0С |
34,9 |
34,9 |
34,9 |
34,9 |
34,9 |
Изменение теплосодержания ΔQтс, кДж/кг |
2,72 |
2,72 |
2,72 |
2,72 |
2,72 |
Увеличение частоты сердечных сокращение ΔЧСС, уд/мин |
5 |
6 |
10 |
15 |
25 |
Влагопотери ΔР, г/ч |
Не характерны |
||||
Теплоощущения Т0, баллы |
3,0 |
3,0 |
3,0 |
3,0 |
3,0 |
Разность между температурой кожи груди и стопы (tкг - tкс), 0С |
6,0 |
6,0 |
Не характерны |
||
Температура тыла кисти tтк, 0С |
25,0 |
24,5 |
24,0 |
23,5 |
23,0 |
Температура тыла стопы tтс, 0С |
28,0 |
27,5 |
27,0 |
26,5 |
26,0 |
Реальная эффективность специальной антиэлектростатической одежды для защиты от пониженных температур складывается из физических характеристик материалов пакета, важнейшие из которых - защита от пониженных температур в сочетании с защитой от статического электричества и сопутствующих загрязнений. Требования, предъявляемые к одежде, эксплуатируемой в экстремальных условиях, наиболее жесткие, поэтому анализ ассортимента и свойств материалов, применяемых для проектирования специальной антиэлектростатической одежды для защиты от пониженных температур, позволит выявить их эффективное сочетание в пакете.