Физическая нагрузка – самый естественный и древний фактор, воздействующий на человека. Она во все времена сопровождала человека, поскольку с одной стороны обусловлена природой земной гравитации, с другой – двигательная активность всегда являлась важным фактором выживания человека. Существо адаптации к физическим нагрузкам заключается в раскрытии механизмов, за счет которых нетренированный организм становится тренированным, то есть механизмов, лежащих в основе формирования положительных сторон адаптации, обеспечивающих тренированному организму преимущества перед нетренированным.
Адаптация к физическим нагрузкам – это системное явление, которое включает приспособление не только к величине нагрузки, но и изменению: биохимического состава внутренней среды организма; интенсивности обмена веществ; психоэмоционального фона.
То есть речь идет не об адаптации опорно-двигательного аппарата к выполняемой работе, а об адаптации организма спортсмена в его системном понимании к ситуации в условиях значительной мышечной активности. При этом в систему адаптации в каждой последующей попытке (тренировке, повторе упражнений) оказываются вовлеченными все новые и новые структурные элементы. Например, увеличение вовлекаемых в работу нервно-мышечных единиц, будет сопровождаться изменением электролитного состава и гормонального фона организма (А.С. Солодков, Е.Б. Сологуб, 2008).
В практике спорта до сих пор не разработаны объективные методы оценки адаптационных процессов к физическим нагрузкам и принято считать основным их критерием динамику уровня спортивных достижений и темп роста спортивных результатов. Однако адаптация является сложным комплексным процессом и включает в себя множество факторов.
Адаптацию к физическим нагрузкам можно охарактеризовать следующими основными чертами:
– тренированный организм может выполнять физическую нагрузку такой продолжительности и интенсивности, которая не под силу нетренированному (марафонский бег, подъем штанги весом, превышающим вес собственного тела более чем в 2 раза и т.д.);
– в состоянии покоя и при умеренной физической нагрузке тренированный организм работает более экономно (ЧСС 30–50 уд/мин, ЧД 8–15 раз/мин, вырабатывает существенно меньше лактата и т.д);
– при предельно напряженной мышечной работе наблюдается обратный эффект: уровень МПК выше, чем у нетренированного в 2 раза (5–6 л/мин); частота дыхания может достигать до 60 раз/мин, артериальное давление – до 270 мм рт. ст. То есть жизненные показатели тренированного человека при предельных нагрузках могут достигать величин, не совместимых с жизнью для обычного человека.
Для понимания адаптации к физическим нагрузкам с позиций молекулярной физиологии следует разделять два ее основных этапа – срочную и долговременную адаптацию.
Срочная адаптация может быть описана в рамках Павловского рефлекса «что такое?». Это ориентировочный врожденный рефлекс, в котором И.П. Павлов видел не только обострение чувствительности, но и торможение многих побочных реакций. В некоторых ситуациях тормозные реакции становятся ведущими (например, оцепенение при встрече с неожиданным противником вместо агрессивного поведения или панического бегства).
Реакции возбуждения активируют нейротрофические влияния и функции систем вспомогательного значения: дыхания, кровообращения. Следствием активации системы гипоталамус-гипофиз-надпочечники является резкое увеличение частоты дыхания и сердечных сокращений, повышение уровня катаболических процессов в системах жизнеобеспечения. Причем, выраженность этих изменений неадекватна силе воздействующего агента. Повышенная продукция гормонов коры надпочечников приводит не только к мобилизации систем адаптации («у страха глаза велики» – частный элемент выброса гормонов мозгового слоя надпочечников, вызывающих расширение зрачков), но и к повреждению клеточных структур. Рассмотренные механизмы несовершенны. Срочная адаптация энергетически расточительна, мобилизация физиологических функций, как правило, неадекватна силе воздействующего фактора и деятельность организма протекает на пределе его физиологических возможностей, резервы быстро исчерпываются.
В качестве примера срочной адаптации можно привести реакции организма нетренированных и тренированных людей на выполнение однократной физической нагрузки, например, пробегание с максимальной скоростью дистанции 400 м. У спортсменов и не спортсменов изменяются одни и те же показатели: ЧСС, ЧД, объем вентиляции легких, МОК, хотя сдвиги в показателях у спортсменов будут гораздо выше.
При долговременной адаптации в сформированной функциональной системе состав исполнительных элементов становится жестким, количественно ограниченным, энергетически экономным. На однократное воздействие фактора (или группы факторов) среды, например, физическую нагрузку определенного типа, организм отвечает системной реакцией, в которой интегрированы различные функции. Но только в сложившейся функциональной системе приспособительные возможности организма будут реализованы с максимальным эффектом. Именно с этим связаны физиологические различия функциональной активности различных систем организма у спортсменов различных видов спорта.
Так, например, и тяжелоатлет, и пловец испытывают на тренировках значительные нагрузки. Они оба тренированные, со сформировавшимися функциональными системами долговременной адаптации. В конечном итоге у обоих физиологические сдвиги и новый уровень метаболизма сохраняют гомеостаз, адекватный новым условиям существования. Но у каждого эта система своя и состоит она из разных элементов.
Увеличение функциональных возможностей систем органов закономерно влечет за собой активацию синтеза нуклеиновых кислот и белков в клетках. Это приводит к формированию стойких структурных изменений, увеличивающих потенциал систем, ответственных за адаптацию. Это объясняет гипертрофию органа, например, гипертрофию миокарда левого желудочка сердца у спорстменов-марафонцев и т.д.
То есть формируется системный структурный след, который и представляет собой основу адаптации к новым условиям среды. Схематично это можно представить следующим образом:
Интенсификация функций системы органов → Синтез нуклеиновых кислот и белков → Гипертрофия органов системы → Системный структурный след
Однако гиперфункция после окончания гипертрофии постепенно прекращается, поскольку функция органа постепенно распределяется в увеличенной массе клеточных структур и функционирование возвращается к прежнему уровню. В след за этим прекращается активация генетического аппарата, и синтез белков возвращается в прежнее русло.
Результаты этих исследований позволили предположить, что количество функций, выполняемых единицей массы органа (интенсивность функционирования структур) играет важную роль в активации генетического аппарата клетки. Когда интенсивности «тесно» в органе – активируется синтез белка, что ведет к гипертрофии органа. Если интенсивности слишком «просторно» – синтез белка прекращается с последующей инволюцией органа. В конечном итоге соотношение интенсивность функций – объем органа приходят к определенному равновесию, свойственному здоровому организму. Например, бодибилдеры. Пока спортсмен занимается – набирает мышечную массу. При отсутствии физической нагрузки гипертрофия мышц прекращается и начинается обратный процесс.
Таким образом, внутриклеточный механизм, осуществляющий двустороннюю связь между физиологической функцией и генетическим аппаратом клетки, обеспечивает положение, при котором интенсивность функциональной системы определяет одновременно активность генетического аппарата (определяющего физиологические изменения при адаптации) и обеспечивает гомеостаз.
Морфофункциональные перестройки при долговременной адаптации обязательно сопровождаются следующими процессами: изменением взаимоотношений регуляторных механизмов; мобилизацией и использованием физиологических резервов организма; формированием специальной функциональной системы адаптации к конкретной деятельности.
Эти три физиологические реакции являются главными и основными составляющими процесса адаптации. Такая функциональная система у спортсменов представляет собой вновь сформированное взаимоотношение нервных центров, гормональных, вегетативных и исполнительных органов, необходимое для решения задач приспособления организма к физическим нагрузкам.
В конечном итоге переход от срочного, во многом несовершенного, этапа адаптации, к долговременному – узловой момент адаптационного процесса, так как является свидетельством эффективного приспособления к соответствующим факторам среды.
При подготовке спортсменов с ОФВ, также, как и у здоровых спортсменов формируются адаптационные перестройки, однако они имеют определенные отличия. Имеющиеся нарушения хотя бы в одной из функциональных систем вынуждают компенсировать это работой других систем, следовательно, изменяется функционирование всего организма.
Например, удаление доли или целого легкого влечет за собой изменение функций дыхания и кровообращения, ампутация конечности или ее сегмента – изменения в координации движений и механизмах постурального контроля, потеря зрения приводит к сложной перестройке взаимодействия сохранных анализаторов. Все эти перестройки осуществляются автоматически. Чем тяжелее дефект, тем большее количество систем организма включается в процесс компенсации.
Автоматизм включения компенсаторных функций не определяет сразу механизмы компенсации, они формируются постепенно. Это следует учитывать при построении тренировочного процесса, поскольку с помощью физических нагрузок можно управлять данным процессом. Кроме того, любая по сложности функциональная система в организме формируется на основе уже существующих «предсуществующих» физиологических механизмов, которые вовлекаются или не вовлекаются в качестве компонентов системы в зависимости от «потребностей», возникающих на данный момент под воздействием факторов, вызывающих адаптацию.
Несмотря на то, что процесс адаптации протекает по общим законам, он реализуется в рамках генотипа конкретного индивидуума и особенностей его фенотипа, сформировавшегося в условиях окружающей его среды. В случае со спортсменами с ОФВ наличие патологии может нарушать существующие в норме физиологические механизмы или их компоненты, это детерминирует необходимость формирования компенсаторных функций, образование новых связей, определяющих развитие адаптационных перестроек всей системы.
Таким образом, у спортсмена с инвалидностью в процессе многолетней подготовки формируются специфичные функциональные системы, обеспечивающие высокую спортивную результативность, но отличные от таковых у здоровых.
При этом на каждом уровне подготовки выявляются новые проблемы и свойства, изучаемых компонентов спортивной подготовки, обусловленные наличием заболевания и утратой каких-либо функций. При этом каждая группа заболеваний обуславливает наличие физиологических особенностей и ограничений, влияющих на адаптационные процессы в организме на фоне интенсивных нагрузок. Их учет при определении задач многолетней спортивной подготовки и планировании тренировочного процесса позволяет целенаправленно воздействовать на организм, способствует формированию компенсаторных механизмов и, в конечном, итоге позволяет добиться наивысших для данного индивида спортивных результатов без угрозы для его здоровья, что будет способствовать сохранению его спортивного долголетия.