Метрическими называются задачи, связанные с измерением расстояний и углов. В них определяются действительные величины и форма геометрических фигур, расстояния между ними и другие характеристики по их метрически искаженным проекциям. Решение метрических задач основано на том, что геометрическая фигура, принадлежащая плоскости, параллельной плоскости проекций, проецируется на нее в конгруэнтную ей фигуру (см. свойства параллельного проецирования параграф 1.3). Поэтому при решении метрических задач широко используются способы преобразования комплексного чертежа.
Рассмотрим три группы метрических задач. К первой относятся задачи, в которых требуется найти расстояние между двумя геометрическими фигурами; ко второй – задачи на определение действительных величин плоских фигур и углов; к третьей группе принадлежат задачи, связанные с построением в плоскости общего положения геометрических фигур по заданным размерам.