Дистанционное зондирование Земли (ДЗЗ) –получение информации о поверхности Земли и объектах на ней, атмосфере, океане, верхнем слое земной коры бесконтактными методами, при которых регистрирующий прибор удален от объекта исследований на значительное расстояние [1]. Общей физической основой дистанционного зондирования является функциональная зависимость между зарегистрированными параметрами собственного или отраженного излучения объекта, его биогеофизическими характеристиками и пространственным положением. Суть метода заключается в интерпретации результатов измерения электромагнитного излучения, которое отражается либо излучается объектом и регистрируется в некоторой удаленной от него точке пространства.
Дистанционные методы применяются в исследованиях Земли очень давно. Вначале использовались рисованные снимки, которые фиксировали пространственное расположение изучаемых объектов. С изобретением фотографии возникла наземная фототеодолитная съемка, при которой по перспективным фотоснимкам составляли карты горных районов. Развитие авиации обеспечило получение аэрофотоснимков с изображением местности сверху, в плане. Это вооружило науки о Земле мощным средством исследований – аэрометодами.
Понятие дистанционного зондирования появилось в XIX веке вслед за изобретением фотографии, а одной из первых областей, в которых стали применять этот метод, стала астрономия. Впоследствии, дистанционное зондирование начали использовать в военной области для сбора информации о противнике и принятия стратегических решений. Во время Гражданской войны в США фотоснимки, полученные с помощью неуправляемых летательных аппаратов, служили для наблюдения за перемещением войск, подвозом припасов, ходом фортификационных работ и для оценки эффекта артиллерийских обстрелов. В результате исследований, которые финансировались различными государствами, были разработаны технологии, позволившие создать сенсоры сначала для военных целей, а затем и для гражданского применения этого метода. После Второй мировой войны метод дистанционного зондирования стали использовать для наблюдения за окружающей средой и оценки развития территорий, а также в гражданской картографии. В 60-х годах XX века, с появлением космических ракет и спутников, дистанционное зондирование вышло в космос.
Новая эра дистанционного зондирования связана с пилотируемыми космическими полетами, разведывательными, метеорологическими и ресурсными спутниками.
Возможности ДЗ в военной области значительно возросли после 1960 года в результате запуска разведывательных спутников в рамках программ CORONA, ARGON, LANYARD, целью которых было получение фотоснимков с низких орбит. Вскоре были получены стереопары снимков с разрешением 2 метра. Первые спутники работали на орбите от семи до восьми дней, но уже следующие поколения этих аппаратов были способны поставлять данные в течение нескольких месяцев.
В результате осуществления программ пилотируемых полетов, которые были начаты в США в 1961 году, человек впервые высадился на поверхность Луны (1969 г.). Следует отметить программу Mercury, в рамках которой были получены снимки Земли, систематический сбор данных дистанционного зондирования во время проекта Gemini (1965–1966 гг.), программу Apollo (1968–1975 гг.), в ходе которой велось дистанционное зондирование земной поверхности (ДЗЗ) и состоялась высадка человека на Луну, запуск космической станции Skylab (1973–1974 гг.), на которой проводились исследования земных ресурсов, полеты космических кораблей многоразового использования, которые начались в 1981 году, а также получение многозональных снимков с разрешением 100 метров в видимом и близком инфракрасном диапазоне с использованием девяти спектральных каналов.
В Советском Союзе, а затем в России космические программы развивались параллельно космическим программам США. Полет Юрия Гагарина 12 апреля 1961 года, ставший первым полетом человека в космос, запуски космических кораблей «Восток» (1961–1963 гг.), «Восход» (1964–1965 гг.) и «Союз», работа на орбите космических станций «Салют» (впервые 19 апреля 1971 года).
Первый метеорологический спутник был запущен в США 1 апреля 1960 года. Он использовался для прогноза погоды, наблюдения за перемещением циклонов и других подобных задач. Первым среди спутников, которые применялись для регулярной съемки больших участков земной поверхности, стал TIROS-1 (Television and Infrared Observation Satellite).
Первый специализированный спутник был запущен в 1972 году. Он назывался ERTS-1 (Earth Resources Technology Satellite) и использовался, в основном, для целей сельского хозяйства. В настоящее время спутники этой серии носят название Landsat.
Они предназначены для регулярной многозональной съемки территорий со средним разрешением. Позже, в 1978 году, был запущен первый спутник со сканирующей системой SEASAT, но он передавал данные всего три месяца. Первый французский спутник серии SPOT, с помощью которого можно было получать стереопары снимков, был выведен на орбиту в 1985 году. Запуск первого индийского спутника дистанционного зондирования, названного IRS (Indian Remote Sensing), состоялся в 1988 году. Япония также вывела на орбиту свои спутники JERS MOS.
Начиная с 1975 года, Китай периодически запускал собственные спутники, но полученные ими данные до сих пор находятся в закрытом доступе. Европейский космический консорциум вывел на орбиту свои радарные спутники ERS в 1991 и 1995 годах, а Канада-спутник RADARSAT в 1995 году.
История развития аэрокосмических методов свидетельствует о том, что новые достижения науки и техники сразу же используются для совершенствования технологий получения снимков. Так произошло в середине XX в., когда такие новшества, как компьютеры, космические аппараты, радиоэлектронные съемочные системы, совершили революционные преобразования в традиционных аэрофотометодах – зародилось аэрокосмическое зондирование. Космические снимки предоставили геоинформацию для решения проблем регионального и глобального уровней.
В настоящее время отчетливо проявляются следующие тенденции поступательного развития аэрокосмического зондирования.
Аэрокосмический снимок – это двумерное изображение реальных объектов, которое получено по определенным геометрическим и радиометрическим (фотометрическим) законам путем дистанционной регистрации яркости объектов и предназначено для исследования видимых и скрытых объектов, явлений и процессов окружающего мира, а также для определения их пространственного положения.
Диапазон масштабов современных аэрокосмических снимков огромен: он может меняться от 1:1000 до 1:100 000 000, т.е. в сто тысяч раз. При этом наиболее распространенные масштабы аэрофотоснимков лежат в пределах 1:10 000 – 1:50 000, а космических – 1:200 000 – 1:10 000 000. Все аэрокосмические снимки принято делить на аналоговые (обычно фотографические) и цифровые (электронные). Изображение цифровых снимков образовано из отдельных одинаковых элементов – пикселей (от англ. Picture element–рixel); яркость каждого пиксела характеризуется одним числом.
Аэрокосмические снимки как информационные модели местности характеризуются рядом свойств, среди которых выделяют изобразительные, радиометрические (фотометрические) и геометрические. Изобразительные свойства характеризуют способность снимков воспроизводить мелкие детали, цвета и тоновые градации объектов, радиометрические свидетельствуют о точности количественной регистрации снимком яркостей объектов, геометрические характеризуют возможность определения по снимкам размеров, длин и площадей объектов и их взаимного положения.
Оптимальный способ использования данных наблюдения поверхности Земли со спутников заключается в том, чтобы анализировать их совместно с информацией из других источников.
Получение снимков с перекрытием из нескольких последовательных точек орбиты (стереосъёмка) позволяет получить более точное представление о трехмерных объектах и повысить отношение сигнал/шум.
Использование многозональных снимков основано на уникальности тоновых характеристик различных объектов. Объединение яркостных данных из снимков в различных спектральных диапазонах позволяет безошибочно выделять определенные пространственные структуры. Съемку с использованием большого числа (более 10) узких съемочных зон называют гиперспектральной. При гиперспектральной съемке увеличивается возможность выделения объектов, характеризующихся наличием полос поглощения, что характерно, например, для загрязнений. Многозональная и гиперпектральная съемки позволяют более эффективно использовать различия в спектральной яркости объектов съемки для их дешифрирования.
К этому виду снимков можно отнести также радиолокационные снимки, получаемые как при регистрации отраженных радиоволн разной длины, так и при разной их поляризации.
Многовременная съемка – это плановая съемка в заранее определенные даты, которая позволяет выполнять сравнительный анализ снимков тех объектов, характеристики которых изменяются во времени.
Многоуровневая съемка – съемка с различными уровнями дискретизации используется для получения более подробной информации об изучаемой территории.
Как правило, весь процесс сбора данных подразделяют на три уровня: космическая съемка, аэросъемка и наземные исследования.
Снимки, полученные методом многополяризационной съёмки, используют для проведения границ между объектами на основе различий в поляризационных свойствах отраженного излучения. Так, например, отраженное излучение от водной поверхности обычно более сильно поляризовано, чем отраженное излучение от растительного покрова.
Комбинированный метод заключается в использовании многовременной, многозональной и многополяризационной съемок.