Научная электронная библиотека
Монографии, изданные в издательстве Российской Академии Естествознания

1.3. Способы проецирования

Проекцией точки А на плоскость проекций π1 называется точка А1 пересечения проецирующей прямой с плоскостью проекций π1, проходящей через точку А, (рис. 1.1):

Проекция любой геометрической фигуры есть множество проекций всех ее точек. Направление проецирующих прямых и положение плоскостей π1 определяют аппарат проецирования.

Центральным проецированием называется такое проецирование, при котором все проецирующие лучи исходят из одной точки S – центра проецирования (рис. 1.2).

Параллельным проецированием называют такое проецирование, при котором все проецирующие прямые параллельны заданному направлению S (рис. 1.3).

.

Рис. 1.1. Проекция точки А на плоскость проекций π1

.

Рис. 1.2. Пример центрального проецирования

.

Рис. 1.3. Пример параллельного проецирования

Параллельное проецирование представляет собой частный случай центрального проецирования, когда точка S находится на бесконечно большом расстоянии от плоскости проекций π1.

При заданном аппарате проецирования каждой точке пространства соответствует одна и только одна точка на плоскости проекций.

Одна проекция точки не определяет положения этой точки в пространстве. Действительно, проекции А1 может соответствовать бесчисленное множество точек А, А’’, …, расположенных на проецирующей прямой (рис. 1.4).

Для определения положения точки в пространстве при любом аппарате проецирования необходимо иметь две ее проекции, полученных при двух различных направлениях проецирования (или при двух различных центрах проецирования).

.

Рис. 1.4. Пример расположения множества точек на проецирующей прямой

Так, из рис. 1.5 видно, что две проекции точки А (А1 и А2), полученные при двух направлениях проецирования S1 и S2 , определяют единственным образом положение самой точки А в пространстве – как пересечение проецирующих прямых 1 и 2, проведенных из проекций А1 и А2 параллельно направлениям проецирования S1 и S2.

.

Рис. 1.5. Определение положения точки А в пространстве


Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1,674