Определение взаимного положения плоскости и поверхности – позиционная задача, для решения которой применяется метод вспомогательных секущих плоскостей. В качестве вспомогательных секущих плоскостей используются проецирующиеся плоскости – плоскости перпендикулярные плоскостям проекций, поэтому основу метода вспомогательных секущих плоскостей составляет алгоритм решения задачи по нахождению линии пересечения поверхности проецирующей плоскостью.
Особое место занимают задачи по нахождению линии пересечения плоскости с конической поверхностью. В зависимости от положения секущей плоскости линией пересечения может быть окружность, эллипс, парабола, гипербола.
Для определения проекции линии сечения следует найти проекции точек, принадлежащих этой линии в следующем порядке:
1) проекции опорных точек – точек расположенных на очерковых образующих поверхности (эти точки определяют границы видимости проекции кривой);
2) проекции экстремальных точек, удаленных на минимальные и максимальные расстояния от плоскостей проекций;
3) проекции произвольных (промежуточные) точек линии сечения.
В зависимости от положения плоскости по отношению к плоскостям проекций, сложность решения позиционной задачи, по определению линии пересечения ее с поверхностью существенно меняется. Наиболее простым представляется случай, когда плоскость проецирующая, поэтому к рассмотрению предлагается пример пересечения поверхности проецирующей плоскостью
Окружность, по которой плоскость α пересекает сферу, проецируется на плоскости П1 и П3 в виде эллипса, а на плоскость П2 в прямую линию ограниченную очерком сферы.
Охарактеризуем выбранные для построения точки:
1, 8 – две вершины эллипса, определяющие положение малой оси на горизонтальной и профильной проекциях, их фронтальные проекции определяют пересечение следа плоскости α с очерком сферы. Эти точки являются соответственно высшей и низшей точками сечения.
2, 3 – фронтальные проекции этих точек лежит на вертикальной оси сферы, а профильные проекции будут лежать на очерке сферы и определять зону видимости при построении эллипса на П3.
4, 5 – две вершины эллипса, определяющие положение большой оси эллипса на горизонтальной и профильной проекциях, положение их фронтальной проекции определяет перпендикуляр, опущенный из центра сферы к следу плоскости α.
.
а
.
б
Рис. 8.1. Изображение пересечения поверхности сферы проецирующей плоскостью: а − изображение в пространстве; б − изображение на комплексном чертеже
6, 7 – фронтальные проекции этих точек лежат на горизонтальной оси сферы, т.е. принадлежат экватору сферы, их горизонтальная проекция лежит на очерке сферы и определяет зону видимости при построении эллипса на П1.
Линия пересечения плоскости α и сферы на фронтальной плоскости проекций совпадает со следом плоскости α, на ней отмечаем точки 12…82. Для нахождения горизонтальных проекций этих точек в общем случае используется метод вспомогательных секущих плоскостей (β- горизонтальные плоскости уровня). Например, через точки 22, 32 проведем след плоскости β12, на горизонтальной плоскости проекций линией пересечения плоскости β1 и сферы будет окружность m11, а точки 21 и 31 лежат на этой окружности по линии связи (в данном случае осевой линии). Таким образом находятся все точки, кроме 11 и 81 , которые ввиду своего положения на очерке фронтальной проекции сферы будут принадлежать горизонтальной осевой линии на плоскости П1. Построенные точки 11…81 соединим плавной кривой линией с.
Особое место занимают задачи по нахождению линии пересечения плоскости с конической поверхностью. В зависимости от положения секущей плоскости линией пересечения может быть окружность, эллипс, парабола.