Современное техническое состояние рыбопромыслового флота России характеризуется несколькими особенностями, которые порождены проблемами конкуренции и усилением требований к технологии добычи и обработкиморепродуктов и ранее не проявлялись в такой значительной мере.
Прежде всего, это расширение спектра судового электрооборудования (СЭ)в сторону мощных электронных устройств, зачастую эти устройства являются продукцией зарубежных компаний и включены в состав судового электрооборудования во время переоснащения, ремонта и модернизаций промысловых судов.
Наиболее распространенными являются устройства, содержащие аналоговые и цифровые компоненты, комбинационные схемы и элементы с памятью: они применяются практически во всех типах СЭ, где требуется реализовать специальные характеристики, обеспечить плавность и точность регулирования, повысить производительность и мощность судовых электроэнергетических систем [1,13].
Возросшие возможности мощной полупроводниковой техники, появление мощных JBT-транзисторов, способных управлять токами в сотни ампер и выдерживать напряжения до 1500 вольт, а также мощных тиристоров и семисторов, фотосемисторов и других силовых электронных приборов, использующихся в разработках современных компаний, поставляющих аппаратуру для промысловых судов, делают актуальным рассмотрение вопросов электромагнитной совместимости [12].
Усложнение составасудового электрооборудования, рост его количества и широкое внедрение комплексных средств автоматизации на судах, как правило, приводит к увеличению интенсивности отказов. Вследствие этого простои судов, вызванные ремонтом оборудования, и связанные с ними убытки существенно возрастают.
В настоящее время совокупные затраты на техническое обслуживание судов за амортизационный срок службы в два-три раза превышают их строительную стоимость. Расходы, связанные с ежегодным ремонтом судов, достигают половины сумм, расходуемых на строительство нового флота. Проблема повышения качества судовой электроэнергии и надежности системы электропитания выдвигается на одно из первых мест.
В этой ситуации задачи подавления помех отмощного судового электронного оборудованиявыступают на передний план, так как выход из строя мощных полупроводниковых приборов во время ведения промысла может приводить к значительным экономическим потерям, а в случае выхода из строя систем управления ответственными энергетическими процессами к потере безопасности мореплавания.
Необходимо также отметить, что в силу уменьшения количественного состава промысловых судов (примерно в 3 раза) обострилась проблема повышения качества настройки систем автоматики СЭС. Участились случаи выхода генераторов из синхронизма из-за деградации параметров электронной аппаратуры САРН и АРЧ и сбоев аппаратуры из-за наличия импульсных помех. Отсутствие эффективной системы регулирования запаса работоспособности аппаратуры приводит к неоправданным временным потерям на межрейсовых стоянках судов. Не уделяется достаточного внимания и отстройке динамических параметров электронных регуляторов, что оборачивается неминуемыми потерями топлива [13].
Далее будут рассмотрены алгоритмические основывейвлет-преобразования и возможности аппаратной реализации активных цифровых фильтров для подавления импульсных регулярных и нерегулярных помех в мощных электропитающих сетях.
Вейвлеты (от англ. wavelet), всплески - это математические функции, позволяющие анализировать различные частотные компоненты данных. Однако это частное определение - в общем случае анализ сигналов производится в плоскости вейвлет-коэффициентов (масштаб - время - уровень) (Scale-Time-Amplitude). Вейвлет-коэффициенты определяются интегральным преобразованием сигнала. Полученные вейвлет-спектрограммы принципиально отличаются от обычных спектров Фурье тем, что дают четкую привязку спектра различных особенностей сигналов ко времени.
В начале развития области употреблялся термин «волночка» -калька с английского. Английское слово «wavelet» означает в переводе «маленькая волна», или «волны, идущие друг за другом». И тот и другой перевод подходит к определению вейвлетов. Вейвлеты - это семейство функций, которые локальны во времени и по частоте («маленькие»), и в которых все функции получаются из одной посредством её сдвигов и растяжений по оси времени (так что они «идут друг за другом»). Санкт-Петербургская школа называет вейвлеты всплесками.
Разработка вейвлетов связана с несколькими отдельными нитями рассуждений, начавшимися с работ Хаара в начале двадцатого века. Весомый вклад в теорию вейвлетов внесли Гуппилауд, Гроссман и Морле, сформулировавшие то, что сейчас известно как НВП (1982), Жан Олаф-Стромберг с ранними работами по дискретным вейвлетам (1983), Добеши, разработавшая ортогональные вейвлеты с компактным носителем (1988), Малла, предложивший кратномасштабный метод (1989), Натали Делпрат, создавшая временно-частотную интерпретацию CWT (1991), Ньюланд, разработавший гармоническое вейвлет-преобразование и многие другие.
В конце 20-го века появляются инструментальные средства по вейвлетам в системах компьютерной математики Mathcad, MATLAB и Mathematica (см. их описание в книге Дьяконова В.П.). Вейвлеты стали широко применяться в технике обработки сигналов и изображений, в частности для компрессии их и очистки от шума. Были созданы интегральные микросхемы для вейвлет-обработки сигналов и изображений.
Существует несколько подходов к определению вейвлета: через масштабный фильтр, масштабную функцию, и вейвлет-функцию. Вейвлеты могут быть ортогональными, полуортогональными, биортогональными. Вейвлетные функции могут быть симметричными, асимметричными и несимметричными, с компактной областью определения и не имеющие таковой, а также иметь различную степень гладкости.
Преобразование Фурье - операция, сопоставляющая функциивещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие -гармонические колебания с разными частотами.
Преобразование Фурье используется во многих областях науки - в физике, теории чисел, комбинаторике, обработке сигналов, теории вероятностей, статистике, криптографии, акустике, океанологии, оптике, геометрии, и многих других. В обработке сигналов и связанных областях преобразование Фурье обычно рассматривается как декомпозиция сигнала на частоты и амплитуды, то есть, обратимый переход от временно́го пространства (time domain) в частотное пространство (frequency domain). Богатые возможности применения основываются на нескольких полезных свойствах преобразования:
Данная работа посвящена вопросам многомасштабного анализа дискретных сигналов. Термин «сигнал» применяется для обозначения любого упорядоченного набора численно зафиксированной информации о каком-либо процессе, объекте, функции и т.п. Под «анализом» сигнала имеется в виду не только его чисто математическое преобразование, но и получение на основе этого преобразования выводов о специфике соответствующего процесса или объекта [2].
Одним из методов многомасштабного анализа является вейвлет-анализ (от англ. «wave» - волна). Он используется уже более десятка лет и хорошо зарекомендовал себя в таких областях как архивация данных, медицина и биология (анализ интервалов сердцебиений, ЭКГ, последовательностей ДНК), анализ наблюдательных данных (метеорология, акустика, сейсмо-
логия) [4].
Принципиально новым методом многомасштабного анализа является структурная индексация. Её суть заключается в выявлении структурных особенностей сигналов для последующего анализа этих особенностей.
Современное состояние электроэнергетических систем характеризуется активным внедрением различного электронного оборудования [1,6,7,8], применяемого в качестве нагрузок низковольтной электрической сети - компьютеры, телевизоры, электроплиты с питанием от ШИМ преобразователей и другое аналогичное оборудование. Современные электронные устройства различного назначения имеют, как правило, импульсные источники вторичного питания, характер воздействия которых, на синусоидальную форму питающих напряжений, недостаточно точно описывается обычным спектральным Фурье-анализом, который оперирует со спектрами сигналов, определенных единым образом для всего временного интервала анализа. Конечно, и в спектральной области Фурье наблюдаются паразитные гармонические составляющие, но в силу их широкополосности выделение каких-либо особенностей затруднено. Для выделения особенностей при импульсном характере нарушений (просечках) лучшие результаты в решении задач локализации нарушений формы синусоидальной кривой могут быть получены на основе вейвлет-преобразования, которое находит все большее применение в задачах цифровой обработки сигналов[2,9,10,11].
Данная работа посвящена решению задач, связанных с обработкой и анализом сложных сигналов, имеющих сложную внутреннюю структуру. Сигналы питающего напряжения содержат разномасштабные локальные особенности. Относительная величина и временная протяженность таких особенностей зависит от природы возмущения.
Естественным и наиболее эффективным способом представления таких сигналов является построение нелинейных адаптивных аппроксимирующих схем на основе экстраполирующих фильтров. Инструментом, позволяющим реализовать такую процедуру для сигналов с подобными особенностями, является вейвлет-преобразование. На основе вейвлет-преобразования в данной работе предложены методы обработки и анализа формы питающих электрических напряжений, которые базируются на следующих операциях:
1) выбор «наилучшего» аппроксимирующего базиса;
2) идентификация структурных компонентов сигнала;
3) локализация особенностей.
Новизна предлагаемых решений состоит в обосновании целесообразности применения вейвлет-разложения с целью определения локальных особенностей в сигнале питающего напряжения. Используя основы современной теории обработки сигналов, выстроенацепочка рассуждений от задач моделирования до эффективных вычислительных решений. Предложенные методы позволяют:
1) выделять изолированные особенности в структуре сложного сигнала;
2) классифицировать локальные особенности;
3) предотвращать сбои работы персональных компьютеров в режиме реального времени при выполнении ими управления различными внешними приборами: коммуникационным оборудованием или технологическими процессами;
4) контролировать качество электрической энергии в точках общего присоединения потребителей к системам электроснабжения;
5) контролировать качество энергии (а в случае необходимости и компенсации возмущений) на тяговых подстанциях 6-35 кВ.