Научная электронная библиотека
Монографии, изданные в издательстве Российской Академии Естествознания

ПАРАТГОРМОН-РОДСТВЕННЫЙ ПРОТЕИН

Курзанов А. Н., Ледванов М. Ю., Быков И. М., Медведев В. Л., Стрыгина Е. А., Бизенкова М. Н., Заболотских Н. В., Ковалев Д. В., Стукова Н. Ю.,

Литература к главе 8

1. Курзанов А.Н., Быков И.М., Ледванов М.Ю. Паратиреоидный гормон-родственный белок – современные представления о структуре, биохимических характеристиках и физиологической роли в организме // Современные проблемы науки и образования. – 2016. – № 6.; URL: https://www.science-education.ru/ru/article/view?id=25543.

2. Медведев В.Л. Стрыгина Е.А., Курзанов А.Н. Паратиреоидный гормон-родственный белок и рак предстательной железы. Кубанский научный медицинский вестник. 2017; 162(1): 145-154.

3. Ardura J.A., Rayego-Mateos S., Ramila D. et al. Parathyroid hormone-related protein promotes epithelial-mesenchymal transition // J Am Soc Nephrol 2010; 21: 237–248.

4. Arima Y., Matsueda S., Yano H. et al. Parathyroid hormone-related protein as a common target molecule in specific immunotherapy for a wide variety of tumor types // Int. J. Oncol. 2005; 27: 981–988.

5. Asadi F., Faraj M., Sharifi R. et al. Enhanced expression of parathyroid hormone-related protein in prostate cancer as compared with benign prostatic hyperplasia // Human Pathology. 1996. 12(27): 1319-1323.

6. Asadi F., Swanson B., Zariffard R., Kukreja S. Increased Coexpression of Interleukin-6 and Parathyroid Hormone-related Peptide: A Potential Therapeutic Target and/or a Prognostic Marker for Prostate // Cancer. LOI for Portes IOM. July 2014.

7. Asadi F., Kukreja S. PTHrP expression in prostate cancer // Review: Crit. Rev. Euk. Gene Exp. 2005; 15(1): 28-42.

8. Asadi F.K.; Kukreja S.C.; Boyer, B. et al. E1A oncogene expression inhibits PTHrP P3 promoter activity and sensitizes human prostate cancer cells to TNF-induced apoptosis // Int. Urol. Nephrol. 2010; 42: 971-978.

9. Aparicio A.M., Shen L., Tapia E.L.N., Lu J-F., et al. Combined tumor suppressor defects characterize clinically defined aggressive variant prostate cancers. Clinical Cancer Research. 2016; 22(6): 1520–1530. doi: 10.1158/1078-0432.CCR-15-1259.

10. Baud′huin M., Duplomb L., RuizVelasco C. et al. Key roles of the OPG-RANK-RANKL system in bone oncology // Expert Rev Anticancer Ther 2007; 7 (2): 221–32.

11. Bhatia V., Mula R.V., Falzon M. Parathyroid hormone-related protein regulates integrin α6 and β4 levels via transcriptional and post-translational pathways // Exp Cell Res. 2013; 319(10): 1419-30.

12. Bonkhoff H., Wernert N., Dhom G., Remberger K. Relation of endocrine-paracrine cells to cell proliferation in normal, hyperplastic, and neoplastic human prostate // Prostate. 1991; 19: 91–8.

13. Boras-Granic K., Wysolmerski J.J. PTHrP and breast cancer: more than hypercalcemia and bone metastases // Breast Cancer Research 2012; 14: 307.

14. Bradley D.A., Hussain M., Dipaola R.S., Kantoff P. Bone directed therapies for prostate cancer. J Urol. 2007; 178: S42–S48.

15. Bryden A.A., Hoyland J.A., Freemont A.J. et al. Parathyroid hormone related peptide and receptor expression in paired primary prostate cancer and bone metastases // British journal of cancer 2002. 86: 322–325.

16. Bryden A.A, Islam S., Freemont A.J. et al. Parathyroid hormone-related peptide: expression in prostate cancer bone metastases // Prostate Cancer Prostatic Dis. 2002; 5(1): 59-62.

17. Burtis W.J., Wu T., Bunch C. et al. Identification of a novel 17,000-dalton parathyroid hor-mone-like adenylatecyclase-stimulating protein from a tumor associated with humoral hyper-calcemia of malignancy. J Biol Chem.1987; 262: 7151–7156.

18. Bussard K.M., Gay C.V., Mastro A.M. The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Rev. 2008 27: 41–55.

19. Carlinfante G., Vassiliou D., Svensson O., Wendel M., Heinegard  D., Andersson G. Differential expression of osteopontin and bone sialoprotein in bone metastasis of breast and prostate carcinoma. Clin Exp Metastasis. 2003; 20: 437–44.

20. Chen C.D., Welsbie D.S., Tran C. et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004; 10: 33–9.

21. Cheville J.C., Tindall D., Boelter C., Jenkins R., Lohse C.M., et al. Metastatic prostate carcinoma to bone: clinical and pathologic features associated with cancer-specific survival. Cancer. 2002; 95: 1028–1036.

22. Chiarugi P., Giannoni E. Anoikis: a necessary death program for anchorage-dependent cells // Biochemical pharmacology. 2008. 76(11), 1352–1364.

23. Clarke N.W., Hart C.A., Brown M.D. Molecular mechanisms of metastasis in prostate cancer // Asian Journal of Andrology. – 2009; 11: 57–67.

24. Cohen P., Peehl D.M., Graves H.C., Rosenfeld R.G. Biological effects of prostate specific antigen as an insulin-like growth factor binding protein-3 protease // J Endocrinol 1994; 142: 407–15.

25. Cramer S. et al. Parathyroid hormone-related protein (PTHrP) is an epidermal growth factor-regulated secretory product of human prostatic epithelial cells // Prostate. 1996; 29: 20-29.

26. Cui Y., Sun Y., Hu S. et al. Neuroendocrine prostate cancer (NEPCa) increased the neighboring PCachemoresistance via altering the PTHrP/p38/Hsp27/androgen receptor (AR)/p21 signals // Oncogene. 2016 Jul 04.

27. Da Silva J., Gioeli D., Weber M.J., Parsons S.J. The neuroendocrine-derived peptide parathyroid hormone-related protein promotes prostate cancer cell growth by stabilizing the androgen receptor // Cancer Res. 2009; 69(18): 7402–7411.

28. Da Silva J.O., Amorino G.P., Casarez E.V. et al. Neuroendocrine-derived peptides promote prostate cancer cell survival through activation of IGF-1R signaling // Prostate. 2013; 73(8):801-12.

29. Dayyani F., Gallick G.E., Logothetis C.J., Corn P.G. Novel therapies for metastatic castrate-resistant prostate cancer. JNCI Journal of the National Cancer Institute. 2011; 103(22):1665–1675. doi: 10.1093/jnci/djr362.

30. Deftos L.J., Barken I., Burton D.W. et al. Direct evidence that PTHrP expression promotes prostate cancer progression in bone // Biochem Biophys Res Commun 2005; 327: 468–472.

31. Domingo-Domenech J., Oliva C., Rovira A., Codony-Servat J., Bosch M., et al. Interleukin 6, a nuclear factor-kappaB target, predicts resistance to docetaxel in hormone-independent prostate cancer and nuclear factor-kappaB inhibition by PS-1145 enhances docetaxel antitumor activity. Clin Cancer Res. 2006; 12: 5578–5586.

32. Domingo-Domenech J., Mellado B., Ferrer B., Truan D., Codony-Servat J., et al. Activation of nuclear factor-kappaB in human prostate carcinogenesis and association to biochemical relapse. Br J Cancer. 2005; 93: 1285–1294.

33. Dougherty K.M., Blomme E.A., Koh A.J. et al. Parathyroid hormone-related protein as a growth regulator of prostate carcinoma // Cancer Res 1999; 59(23):6015-22.

34. Eiro N., Fernandez-Gomez J., Sacristán R., Fernandez-Garcia B., et al. Stromal factors involved in human prostate cancer development, progression and castration resistance. Journal of Cancer Research and Clinical Oncology. 2017; 143(2): 351–359. doi: 10.1007/s00432-016-2284-3.

35. Fidler I.J. The pathogenesis of cancer metastasis: the «seed and soil» hypothesis revisited. Nature Reviews. Cancer. 2003; 3(6): 453–458. doi: 10.1038/nrc1098.

36. Fizazi K., Yang J., Peleg S., Sikes C.R., et al. Prostate cancer cells-osteoblast interaction shifts expression of growth/survival-related genes in prostate cancer and reduces expression of osteoprotegerin in osteoblasts. Clinical Cancer Research. 2003; 9(7): 2587–2597.

37. Fournier P.G.J., Juárez P., Jiang G., Clines G.A., et al. The TGF-b2; signaling regulator PMEPA1 suppresses prostate cancer metastases to bone. Cancer Cell. 2015; 27(6): 809–821. doi: 10.1016/j.ccell.2015.04.009.

38. Frisch S.M., Screaton R.A. Anoikis mechanisms // Current Opinion in Cell Biology 2001; 13 (5): 555-62.

39. Gagiannis S., Muller M., Uhlemann S. et al. Parathyroid hormone-related protein confers chemoresistance by blocking apoptosis signaling via death receptors and mitochondria // Int J Cancer. 2009; 125(7): 1551-7.

40. Gleave M.E., Hsieh J.T., von Eschenbach A.C., Chung L.W.K. Prostate and bone fibroblasts induce human prostate cancer growth in vivo: implications for bidirectional tumor-stromal cell interaction in prostate carcinoma growth and metastasis // J. Urol. 1992; 147: 1151-1159.

41. Gleave M., Hsieh J.T., Gao C. et al. Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts // Cancer Res., 1991; 51: 3753-3761.

42. Grasso C.S., Wu Y-M., Robinson D.R., Cao X., et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487(7406):239–243. doi: 10.1038/nature11125.

43. Guerreiro P.M, Renfro J.L, Power D.M, Canario A.V.M. The parathyroid hormone family of peptides: structure, tissue distribution, regulation, and potential functional roles in calcium and phosphate balance in fish // Am J Physiol Regul Integr Comp Physiol. 2007, 292 (2): R679-R696.

44. Guise T., Mundy G.R. Physiological and pathological roles of parathyroid hormone-related peptide // Curr Opinions Nephrol Hyperten. 1996; 5: 307-315.

45. Guntur A.R., Doucette C.R., Rosen C.J. PTHrp comes full circle in cancer biology // BoneKEy Reports (2015) 4, Article number: 621 (2015).

46. Hildreth B.E. III, Werbeck J.L., Thudi N.K., Deng X., et al. PTHrP 1–141 and 1–86 increase in vitro bone formation. J Surg Res. 2010; 162: e9–17.

47. Hirano D., Okada Y., Minei S. et al. Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy // Eur Urol. 2004; 45: 586–92.

48. Hofbauer L.C., Neubauer A., Heufelder A.E. Receptor activator of nuclear factor-kappaB ligand and osteoprotegerin: potential implications for the pathogenesis and treatment of malignant bone diseases. Cancer. 2001; 92: 460–470.

49. Huang W.C., Xie Z., Konaka H., Sodek J., Zhau H.E., Chung L.W. Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent protein kinase A signaling pathway. Cancer Res. 2005; 65:2303–13.

50. Hvamstad T., Jordal A., Hekmat N. et al. Neuroendocrine serum tumour markers in hormone-resistant prostate cancer // Eur Urol. 2003; 44: 215–21.

51. Iddon J., Bundred N.J., Hoyland J. et al. Expression of parathyroid hormone-related protein and its receptor in bone metastases from prostate cancer // The Journal of pathology. 2000; 191: 170–174.

52. Inoue H., Nishimura K., Oka D., et al. Prostate cancer mediates osteoclastogenesis through two different pathways. Cancer Lett. 2005; 223: 121–128.

53. Iwamura M., Abrahamsson P.A., Schoen S. et al. Immunoreactive parathyroid hormone-related protein is present in human seminal plasma and is of prostate origin // J. Androl., 1994a; 15: 410-414.

54. Iwamura M. et al. Parathyroid hormone related protein: a potential autocrine growth regulator in human prostate cancer cell lines // Urology 1994; 43: 675-679.

55. Iwamura M., di Sant′Agnese P.A., Wu G. et al. Immunohistochemical localization of parathyroid hormone-related protein in human prostate cancer // Cancer Research. 1993; 53: 1724–1726.

56. Iwamura M., Hellman J., Cockett A.T. et al. Alteration of the hormonal bioactivity of arathyroid hormone-related protein (PTHrP) as a result of limited proteolysis by prostate-specific antigen // Urology 1996; 48: 317–25.

57. Iwamura M., Gershagen S., Lapets O. et al. Immunohistochemical localization of parathyroid hormone-related protein in prostatic intraepithelial neoplasia // Hum. Pathol., 1995; 26: 797-801.

58. Iwamura M., Wu G., Abrahamsson P.A. et al. Parathyroid hormone-related protein is expressed by prostatic neuroendocrine cells. Urology. 1994b; 43: 667-674.

59. Jiborn T., Bjartell A., Abrahamsson P.A. Neuroendocrine differentiation in prostatic carcinoma during hormonal treatment // Urology 1998; 51: 585–9.

60. Jin R.J., Lho Y., Connelly L., Wang Y-Q., Yu X., et al. The Nuclear Factor kappa B Pathway Controls Progression of Prostate Cancer to Androgen Independent Growth. Cancer Res 2008; 68: 6762–6769.

61. Jin R., Sterling J.A., Edwards J.R. et al. Activation of NF-kappa B signaling promotes growth of prostate cancer cells in bone // PLoS One. 2013; 8(4): e 60983

62. Kang Y., Massagué J. Epithelial-Mesenchymal Transitions: Twist in Development and Metastasis. Cell. 2004; 118: 277–279.

63. Khodavirdi A.C., Song Z., Yang S., et al. Increased expression of osteopontin contributes to the progression of prostate cancer. Cancer Res. 2006; 66: 883–8.

66. Keller E.T. The role of osteoclastic activity in prostate cancer skeletal metastases. Drugs Today (Barc). 2002; 38: 91–102.

64. Kingsley L.A., Fournier P.G., Chirgwin J.M., Guise T.A. Molecular biology of bone metastasis. Mol Cancer Ther. 2007; 6: 2609–2617.

65. Kimura Y., Matsugaki A., Sekita A., Nakano T. Alteration of osteoblast arrangement via direct attack by cancer cells: new insights into bone metastasis. Scientific Reports. 2017; 7: 44824. doi: 10.1038/srep44824.

67. Kitazawa S., Kitazawa R. RANK ligand is a prerequisite for cancer-associated osteolytic lesions. J Pathol. 2002; 198: 228–236.

68. Koeneman K.S., Yeung F., Chung L.W.K. Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate. 1999; 39: 246–61.

69. Kremer R., Li J., Camirand A., Karaplis A.C. Parathyroid hormone related protein (PTHrP) in tumor progression // Adv Exp Med Biol. 2011; 720: 145-60.

70. Kronenberg H.M. PTHrP and skeletal development. Ann. N.Y. Acad. Sci. 2006; 1068: 1–13.

71. Ku S.Y., Rosario S., Wang Y. et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 2017; 355(6320): 78-83. DOI: 10.1126 / science.aah4199.

72. Lessard L., Begin L.R., Gleave M.E., Mes-Masson A.M., Saad F. Nuclear localisation of nuclear factor-kappaB transcription factors in prostate cancer: an immunohistochemical study. Br J Cancer. 2005; 93: 1019–1023.

73. Liao J., McCauley L.K. Skeletal metastasis: Established and emerging roles of parathyroid hormone related protein (PTHrP). Cancer and Metastasis Reviews. 2006; 25(4): 559–571.

74. Liao J., Li X., Koh A.J., Berry J.E. et al. Tumor expressed PTHrP facilitates prostate cancer-induced osteoblastic lesions // Int J Cancer. 2008; 123(10): 2267-78.

75. Logothetis C.J., Gallick G.E., Maity S.N., et al. Molecular classification of prostate cancer progression: foundation for marker-driven treatment of prostate cancer. Cancer Discovery. 2013; 3(8):849–861. doi: 10.1158/2159-8290.CD-12-0460.

76. Logothetis C.J., Lin S.H. Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer. 2005; 5: 21–28.

77. Luparello C. Parathyroid Hormone-Related Protein (PTHrP): A Key Regulator of Life/Death Decisions by Tumor Cells with Potential Clinical Applications // Cancers. 2011; 3: 396-407.

78. Mak I.W., Turcotte R.E., Ghert M. Parathyroid hormone-related protein (PTHrP) modulates adhesion, migration and invasion in bone tumor cells. Bone. 2013; 55(1): 198–207.

79. Mani S.A., Guo W., Liao M.J.et al. The epithelial-mesenchymal transition generates cells with properties of stem cells // Cell. 2008; 133: 704–715.

80. Martin T.J. Parathyroid Hormone-Related Protein, Its Regulation of Cartilage and Bone Development, and Role in Treating Bone Diseases // Physiological Reviews, 2016; 96 (3): 831-871.

81. McCauley L.K., Martin T.J. Twenty-five years of PTHrP progress: From cancer hormone to multifunctional cytokine // J Bone Miner Res. 2012; 27: 1231–1239.

82. Mickle A.D., Shepherd A.J., Loo L. et al. Induction of thermal and mechanical hypersensitivity by parathyroid hormone-related peptide through upregulation of TRPV1 function and trafficking // Pain 2015; 156: 1620–1636.

83. Mori K., Le Goff B., Charrier C. et al. DU145 human prostate cancer cells express functional receptor activator of NFkappaB: new insights in the prostate cancer bone metastasis process. Bone. 2007; 40: 981–990.

84. Morris M.J., Scher H.I. Clinical Approaches to Osseous Metastases in Prostate Cancer // The Oncologist. 2003; (8): 161-173.

85. Moseley J.M., Kubota M., Diefenbach-Jagger H. et al. Parathyroid hormone-related protein purified from a human lung cancer cell line // PNAS 1987; 84: 5048–5052.

86. Msaouel P., Pissimissis N., Halapas A., Koutsilieris M. Mechanisms of bone metastasis in prostate cancer: clinical implications. Best Pract Res Clin Endocrinol Metab. 2008; 22: 341–355.

87. Mu P., Zhang Z., Benelli M., et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science (New York, N.Y.) 2017; 355(6320): 84–88.

88. Mundy G.R. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002; 2: 584–593.

89. Mundy G.R. Osteoporosis and inflammation. Nutr Rev. 2007; 65: S147–S151.

90. Navone N.M., Rodriguez-Vargas M.D.C., Benedict W.F., et al. TabBO: a model reflecting common molecular features of androgen-independent prostate cancer. Clinical Cancer Research. 2000; 6(3):1190–1197.

91. Nelson W.G., De Marzo A.M., Isaacs W.B. Prostate cancer. N Engl J Med. 2003; 349: 366–381.

92. Noordzij M.A., van Weerden W.M., de Ridder C.M et al. Neuroendocrine differentiation in human prostatic tumor models // Am J Pathol 1996; 149: 859–71.

93. Ongkeko W.M., Burton D., Kiang A. et al. Parathyroid Hormone Related-Protein Promotes Epithelial-to-Mesenchymal Transition in Prostate Cancer // PLoS ONE. 2014; 9(1): e85803.

94. Otieno B.A., Krause C.E., Jones A.L. et al. Cancer Diagnostics via Ultrasensitive Multiplexed Detection of Parathyroid Hormone-Related Peptides with a Microfluidic Immunoarray // Anal Chem. 2016;88(18):9269-75.

95. Ou Y.C., Chen J.T., Yang C.R., Ko J.L., Hsieh Y.S., Kao C. Expression of osteocalcin in prostate cancer before and after hormonal therapy. Anticancer Res. 2003; 23: 3807–11.

96. Park S.I. McCauley L.K. Nuclear localization of parathyroid hormone-related peptide confers resistance to anoikis in prostate cancer cells // Endocr Relat Cancer, 2012;19: 243-254.

97. Pacifico F., Leonardi A. NF-kappaB in solid tumors. Biochem Pharmacol. 2006; 72: 1142–1152.

98. Philbrick W.M., Wysolmersli J.J., Galbraith S. et al. Defining the roles of the parathyroid hormone-related protein in normal physiology // Physiological Reviews. 1996; 76: 127–173.

99. Pinheiro P.L.C., Cardoso J.C.R., Gomes A.S. et al. Gene structure, transcripts and calciotropic effects of the PTH family of peptides in Xenopus and chicken // BMCEvol Biol. 2010; 10: 373-379.

100. Preston D.M., Torréns J.I., Harding P. et al. Androgen deprivation in men with prostate cancer is associated with an increased rate of bone loss // Prostate Cancer and Prostatic Diseases. 2002; 5, 304-310.

101. Rabbani S.A., Gladu J., Harakidas P. et al. Over-production of parathyroid hormone-related peptide results in increased osteolytic skeletal metastasis by prostate cancer cells in vivo // Int J Cancer. 1999; 80: 257–264.

102. Rahim F., Hajizamani S., Mortaz E. et al. Molecular Regulation of Bone Marrow Metastasis in Prostate and Breast Cancer // Bone Marrow Research. Volume 2014 (2014), Article ID 405920, 12 rages http://dx.doi.org/10.1155/2014/405920.

103. Roato I., Grano M., Brunetti G., et al. Mechanisms of spontaneous osteoclastogenesis in cancer with bone involvement. FASEB J. 2005; 19: 228–30.

104. Roodman G.D. Biology of osteoclast activation in cancer. J Clin Oncol. 2001; 19: 3562–3571.

105. Roodman G.D. Mechanisms of bone metastasis // N Engl J Med. 2004; 350: 1655–1664.

106. Ross J.S., Kallakury B.V., Sheehan C.E., Fisher H.A., Kaufman R.P., et al. Expression of nuclear factor-kappa B and I kappa B alpha proteins in prostatic adenocarcinomas: correlation of nuclear factor-kappa B immunoreactivity with disease recurrence. Clin Cancer Res. 2004; 10: 2466–2472.

107. Rouffet J., Barlet J.P. Parathyroid hormone-related peptide (PTHrP) and bone metabolism // Arch Physiol Biochem. 1995; 103: 3–13.

108. Ryser M.D., Qu Y., Komarova S.V. Osteoprotegerin in bone metastases: mathematical solution to the puzzle // PLoS Comput Biol. 2012; 8(10): e1002703.

109. Sakamoto S., Kyprianou N. Targeting anoikis resistancein prostate cancer metastasis // Molecular Aspects of Medicine.-2010; 31: 205–214.

110. Scher H.I., Sawyers C.L. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis // J Clin Oncol 2005; 23: 8253–61.

111. Schĺüter K.D. PTH and PTHrP: similar structures but different functions // Physiolo-gy.1999; 14(6): 243-249.

112. Schneider A., Kalikin L.M., Mattos A.C. et al. Bone turnover mediates preferential localization of prostate cancer in the skeleton // Endocrinology. 2005; 146:1727–1736.

113. Seibel M.J. Clinical use of markers of bone turnover in metastatic bone disease // Nature Clinical Practice Oncology. 2005; 2, 504-517.

114. Setlur S.R., Royce T.E., Sboner A., Mosquera J.M., Demichelis F., et al. Integrative microarray analysis of pathways dysregulated in metastatic prostate cancer. Cancer Res. 2007; 67: 10296–10303.

115. Strewler G.J., Stem P.H., Jacobs J.W. et al. Parathyroid hormonelike protein from human renal carcinoma cells structural and functional homology with parathyroid hormone // J Clin Invest. 1987; 80: 1803–1807.

116. Suva L.J., Winslow G.A., Wettenhall R.E. et al. A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression // Science. 1987; 237: 893–896.

117. Sweeney C.J., Chen Y.-H., Carducci M., Liu G., Jarrard D.F., Eisenberger M., et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. New England Journal of Medicine. 2015; 373(8): 737–746. doi: 10.1056/NEJMoa1503747.

118. Theoleyre S., Wittrant Y., Tat S.K. et al. The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev. 2004; 15: 457–475.

119. Thomas R., True L.D., Bassuk J.A., Lange P.H., Vessella R.L. Differential expression of osteonectin/SPARC during human prostate cancer progression. Clin Cancer Res. 2000; 6:1140–9.

120. Tovar Sepulveda V.A., Falzon M. Regulation of PTH-related protein gene expression by vitamin D in PC-3 prostate cancer cells. Mol. Cell. Endocrinol. 2002; 190: 115-24.

121. Tzelepi V., Zhang J., Lu J-F., Kleb B., Wu G., Wan X., et al. Modeling a lethal prostate cancer variant with small-cell carcinoma features. Clinical Cancer Research. 2012; 18(3): 666–677. doi: 10.1158/1078-0432.CCR-11-1867.

122. Wan X., Corn P. G., Yang J., Palanisamy N., et al. Prostate cancer cell–stromal cell crosstalk via FGFR1 mediates antitumor activity of dovitinib in bone metastases. Science Translational Medicine. 2014; 6(252):252ra122–252ra122. doi: 10.1126/scitranslmed.3009332.

123. Wang N., Docherty F.E., Brown H.K., Reeves K.J., et al. Prostate cancer cells preferentially home to osteoblast-rich areas in the early stages of bone metastasis: evidence from in vivo models. Journal of Bone and Mineral Research. 2014; 29(12): 2688–2696. doi: 10.1002/jbmr.2300

124. Whang P.G., Schwarz E.M., Gamradt S.C., et al. The effects of RANK blockade and osteoclast depletion in a model of pure osteoblastic prostate cancer metastasis in bone. J Orthop Res. 2005; 23: 1475–1483.

125. Weilbaecher K.N., Guise T.A., McCauley L.K. Cancer to bone: a fatal attraction. Nature Reviews // Cancer 2011; 11, 411–425.

126. Whitfield, J.F. Parathyroid hormone-related protein (PTHrP): an ancient string of cytokines with many known and still unknown functions. In Novel Aspects of PTHrP Physiopathology; Luparello, C., Ed.; Nova Science Publishers: New York, NY, USA, 2007; pp. 1-25.

127. Wright L.E., Guise, T.A. The Role of PTHrP in Skeletal Metastases and Hypercalcemia of Malignancy Clinic Rev Bone Miner Metab. 2014; 12: 119. https://doi.org/10.1007/s12018-014-9160-y

128. Wu G.1., Iwamura M., di Sant′Agnese P.A. et al. Characterization of the cell-specific expres-sion of parathyroid hormone-related protein in normal and neoplastic prostate tissue // Urology. 1998; 51(5A Suppl):110-120.

129. Wysolmerski J.J. Parathyroid hormone-related protein: An update // Clin. Endocrinol. Metab.2012; 97: 2947–2956.

130. Wysolmerski J.J., Stewart A.F. The physiology of parathyroid hormone-related protein: An emerging role as a developmental factor // Annu Rev Physiol. 1998; 40: 431-460.

131. Yao A., Harada M., Matsueda S. et al. New epitope peptides derived from parathyroid hormone-related protein which have the capacity to induce prostate cancer-reactive cytotoxic T lymphocytes in HLA-A2+ prostate cancer patients // Prostate. 2005; 62: 233–242.

132. Yonou H., Ochiai A., Goya M. et al. Intraosseous growth of human prostate cancer in implanted adult human bone: relationship of prostate cancer cells to osteoclasts in osteoblastic metastatic lesions. Prostate. 2004; 58: 406–413.

133. Yilmaz M., Christofori G. EMT, the cytoskeleton, and cancer cell invasion // Cancer Metastasis Rev. 2009; 28: 15–33.

134. Zafeirakis A. Collagenous and non-collagenous biochemical markers of bone metastases from prostate cancer // HIPPOKRATIA. 2010, 14, 3: 164-169.

135. Zegarra-Moro O.L., Schmidt L.J., Huang H., Tindall D.J. Disruption of androgen receptor function inhibits proliferation of androgen-refractory prostate cancer cells // Cancer Res. 2002; 62: 1008–13.

136. Zhang H., Yu C., Dai J., et al. Parathyroid hormone-related protein inhibits DKK1 expression through c-Jun-mediated inhibition of β-catenin activation of the DKK1 promoter in prostate cancer // Oncogene. 2014; 33(19): 2464-77.

137 Zhang J., Dai J., Qi Y., et al. Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest. 2001; 107: 1235–1244.

138. Zhang J., Dai J., Yao Z., Lu Y., Dougall W., et al. Soluble receptor activator of nuclear factor kappaB Fc diminishes prostate cancer progression in bone. Cancer Res. 2003; 63: 7883–7890.


Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1,674