Научная электронная библиотека
Монографии, изданные в издательстве Российской Академии Естествознания

§ 1.1.6. Вихревое электрическое поле

Подобно тому, как движущийся электрический заряд создаёт вихревое магнитное поле, направление вектора индукции которого определяется правилом правого винта (рис. 1.6), переменное магнитное поле создаёт вихревое электрическое поле (рис. 1.13), направление напряжённости которого определяется правилом левого винта:

Если направление увеличения вектора магнитной индукции совпадает с направлением поступательного движения левого винта, то направление вращения шляпки левого винта совпадает с направлением вектора напряжённости электрического поля.

_1_13.tif

Рис. 1.13. Вихревое электрическое поле. Замкнутый контур напряжённости электрического поля перпендикулярен плоскости рисунка

Возникновение вихревого электрического поля под действием переменного магнитного поля называется явлением электромагнитной индукции (индукцией). Само вихревое электрическое поле, возникшее под действием магнитного поля, называется индуцированным электрическим полем.

На практике, переменное магнитное поле нередко получают изменением силы тока в соленоиде (рис. 1.11). Экспериментально вихревое электрическое поле можно обнаружить с помощью металлического (например, алюминиевого) кольца (проводящего контура) внутрь которого вносится магнит (рис. 1.14).

_1_14.wmf

Рис. 1.14. Иллюстрация возникновения индукционного тока

Как видно из рис. 1.14 вихревое электрическое поле, вызванное движением магнита внутрь кольца, приводит к возникновению электрического тока в проводящем контуре (индукционного тока) и вектору магнитной индукции, направленному из кольца против движения магнита. Кольцо становится подобным магниту, обращённому одноимённым полюсом к приближающемуся магниту. Одноимённые же полюсы отталкиваются. Поэтому кольцо от магнита будет отталкиваться, а стержень, свободно вращающийся вокруг вертикальной оси, поворачиваться. При движении магнита из кольца направление электрического тока в проводящем контуре сменится на противоположное также как и направление вектора магнитной индукции. В результате кольцо к магниту станет притягиваться. При движении внутрь кольца южного полюса магнита поведение стержня с кольцами окажется тем же самым. Электрический ток, возникающий под действием индуцированного электрического поля называется индукционным током. Русским физиком Э.Х. Ленцем впервые было сформулировано общее правило определения направления индукционного тока. Согласно правилу Ленца возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Важно отметить, что если магнит внести в другое (разрезанное) кольцо, то электрического тока в нём не возникнет и стержень не повернётся.

Работу по перемещению единичного положительного заряда вдоль замкнутого контура называют электродвижущей силой (ЭДС):

ЭДС = Е∙2πr,

где Е – абсолютное значение вектора s158.wmf, замкнутого в форме окружности с радиусом r. В общем случае, для замкнутого контура длиной l произвольной формы

ЭДС = Е∙l.

Размерность ЭДС та же, что у потенциала и напряжения (вольты).

При этом установлено, что электродвижущая сила индукции (εi) определяется равенством:

s159.wmf (1.8)

где s160.wmf – скорость изменения магнитного потока Ф через площадь S,

Ф = ВS∙cos α,

α – угол между вектором магнитной индукции и нормалью (перпендикуляром) к плоскости S. Единицей магнитного потока является вебер, 1 Вб ≡ 1 Tл∙1 м2.

Знак «минус» в равенстве (1.8) означает, что:

2.psd индуцированное вихревое электрическое поле совершает работу, противоположную по знаку работе, совершаемой переменным магнитным полем – вектор s161.wmf индукционного тока противоположен направлению изменения вектора магнитной индукции переменного магнитного поля;

2.psd направление вектора напряжённости определяется против правила буравчика, то есть по правилу левого винта.

Если скорость изменения магнитного потока на измеряемом отрезке времени ∆t – постоянна, то равенство (1.8) может быть записано в интегральной форме:

s162.wmf

где ∆Ф = Ф2 – Ф1.

Сила индукционного тока (I), измеряемая в амперах (А), определяется равенством:

s163.wmf

где R – сопротивление проводящего контура, [R] = Ом.

Примеры решения задач

Задача 1.

Определить ЭДС индукции в контуре проводника, если за три секунды магнитный поток в этом контуре равномерно уменьшился на 0,6 мВб.

Дано:

∆t = 3 c

∆Ф = –0,6 мВб

Решение

s164.wmf s165.wmf

Ответ: s166.wmf

s167.wmf – ?

Задача 2

Магнитный поток, пронизывающий контур проводника равномерно увеличился с 1,4 мВб до 2 мВб и при этом ЭДС индукции оказалась равной – 1,2 мВ. Найти время изменения магнитного потока и силу индукционного тока, если сопротивление проводника 0,24 Ом.

Дано:

Ф1 = 1,4∙10–3 Вб

Ф2 = 2∙10–3 Вб

εi = –1,2∙10–3 В

R = 0,24 Ом

Решение

s168.wmf

следовательно s169.wmf

s170.wmf s171.wmf s172.wmf

t – ?

I – ?

Ответ: ∆t = 0,5 с; I = 5 А

Задачи для самостоятельного решения

1. На сколько изменился магнитный поток за 5 секунд, если в течение этого времени электродвижущая сила равнялась –0,9 В? Увеличивался магнитный поток или уменьшался?

2. Магнитный поток, пронизывающий контур проводника, равномерно уменьшался с 3 Вб до 0,5 Вб, и при этом ЭДС индукции оказалась равной 2 В. Найти время изменения магнитного потока и сопротивление проводящего контура, в котором сила индукционного тока оказалась равной 0,05 А.

1. Сформулируйте правило левого винта.

2. Что такое индукция?

3. Как можно доказать экспериментально возникновение индуцированного электрического поля?

4. В чём заключается правило Ленца?

5. Что такое ЭДС?


Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.252