Научная электронная библиотека
Монографии, изданные в издательстве Российской Академии Естествознания

ПАРАТГОРМОН-РОДСТВЕННЫЙ ПРОТЕИН. 2-е издание переработанное и дополненное

Курзанов А. Н., Ледванов М. Ю., Быков И. М., Медведев В. Л., Стрыгина Е. А., Бизенкова М. Н., Заболотских Н. В., Ковалев Д. В., Стукова Н. Ю.,

Литература к главе 5

1. Acharya C., Adesida A., Zajac P. et al. Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation. J Cell Physiol. 2012; 227: 88-97.

2. Ahlstrom M., Pekkinen M., Lamberg-Allardt C. Dexamethasone downregulates the expression of parathyroid hormone-related protein (PTHrP) in mesenchymal stem cells // Steroids. 2009; 74 (2): 277-282.

3. Ahmed T.A., Hincke M.T. Mesenchymal stem cell-based tissue engineering strategies for repair of articular cartilage. Histol Histopathol. 2014; 29: 669-689. DOI: 10.14670/HH-29. 669.

4. Aigner T., Fundel K., Saas J. et al. Large-scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis. Arthritis Rheum 2006; 54: 3533–3544.

5. Aigner T., Kim H.A., Roach H.I. Apoptosis in osteoarthritis. Rheum Dis Clin North Am 2004; 30: 639–653. xi.

6. Akhtari M., Mansuri J., Newman K.A. et al. Biology of breast cancer bone metastasis // Cancer Biol Ther.2008; 7: 3–9.

7. Albro M.B., Chahine N.O., Li R. et al. Dynamic loading of deformable porous media can induce active solute transport. J Biomech 2008; 41: 3152–3157.

8. Almeida M., Han L., Ambrogini E. et al. Oxidative stress stimulates apoptosis and activates NF-kappaB in osteoblastic cells via a PKCbeta/p66shc signaling cascade: counter regulation by estrogens or androgens. Mol Endocrinol 2010; 24: 2030-2037.

9. Almeida M., Han L., Martin-Millan M. et al. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor – to forkhead box O-mediated transcription. J Biol Chem 2007; 282: 27298-27305.

10. Alonso V., de Gortazar A.R., Ardura J.A. et al. Parathyroid hormone-related protein (107–139) increases human osteoblastic cell survival by activation of vascular endothelial growth factor receptor-2 // J. Cell. Physiol., 2008; 217: 717–727.

11. Alvarez J., Sohn P., Zeng X. et al. TGF β 2 mediates the effects of hedgehog on hypertrophic differentiation and PTHrP expression // Development. 2002; 129: 1913–1924

12. Alves da Silva M.L., Costa-Pinto A.R., Martins A. et al. Conditioned medium as a strategy for human stem cells chondrogenic differentiation. J Tissue Eng Regen Med 2015; 9: 714–723.

13. Amano K., Densmore M., Nishimura R., Lanske, B. Indian hedgehog signaling regulates transcription and expression of collagen type X via Runx2/Smads interactions. J. Biol. Chem. 2014, 289, 24898–24910.

14. Amano K., Hata K., Sugita A. et al. Sox9 family members negatively regulate maturation and calcifi cation of chondrocytes through up-regulation of parathyroid hormone-related protein. Mol Biol Cell 2009, 20: 4541-4551.

15. Amizuka N., Henderson J.E; Hoshi K. et al. Programmed cell death of chondrocytes and aberrant chondrogenesis in mice homozygous for parathyroid hormone-related peptide gene deletion. Endocrinology 1996, 137, 5055–5067.

16. Amizuka N., Karaplis A.C., Henderson J.E. et al. Haploin sufficiency of parathyroid hor-mone-related peptide (PTHrP) results in abnormal postnatal bone development // DevBiol.-1996; 175 (1): 166–176.

17. Amizuka N., Warshawsky H., Henderson J.E. et al. Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral-bone formation // J Cell Biol. 1994; 126 (6): 1611–1623.

18. Amling M., Neff L., Tanaka S. et al. Bcl-2 lies down-stream of parathyroid hormone-related peptide in a signalingpathway that regulates chondrocyte maturation during skeletaldevelopment. J Cell Biol 1997; 136: 205–213.

19. Anborgh P.H., Mutrie J.C., Tuck A.B., Chambers A.F. Role of the metastasis-promoting protein osteopontin in the tumour microenvironment // J. Cell. Mol. Med. 2010; 14 (8): 2037–2044.

20. Ardura J.A., Portal-Nunez S., Lozano D. et al. Local delivery of parathyroid hormone-related protein-derived peptides coated onto a hydroxyapatite-based implant enhances bone regeneration in old and diabetic rats //
J Biomed Mater Res Part A 2016; 104A: 2060–2070.

21. Armiento A.R., Stoddart M.J., Alini M., Eglin D. Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomaterialia. 2018; 65: 1–20.

22. Arnold M.A., Kim Y., Czubryt M.P. et al. MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell. 2007; 12: 377–389.

23. Athanasiou K.A., Eswaramoorthy R., Hadidi P., Hu J.C. Self-organization and the self-assembling process in tissue engineering. Annual review of biomedical engineering. 2013; 15: 115–136.

24. Aung A., Gupta G., Majid G., Varghese S. Osteoarthritic chondrocyte-secreted morphogens induce chondrogenic differentiation of human mesenchymal stem cells. Arthritis and rheumatism. 2011; 63, 148–158, doi: 10.1002/art.30086.

25. Azim H.A., Kamal N.S., Azim H.A. Bone metastasis in breast cancer: the story of RANK-ligand // J Egypt Natl Canc Inst. 2012; 24 (3): 107–114.

26. Bai X.C., Lu D., Bai J. et al. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 2004; 314: 197-207.

27. Barry F., Boynton R.E., Liu B., Murphy J.M. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 268, 189, 2001.

28. Basad E., Wissing F.R., Fehrenbach P. et al. Matrix-induced autologous chondrocyte implantation (MACI) in the knee: clinical outcomes and challenges. Knee Surg Sports Traumatol Arthrosc 2015; 23 (12): 3729–35.

29. Bastepe M., Weinstein L.S., Ogata N. et al. Stimulatory G protein directly regulates hypertrophic differentiation of growth plate cartilage in vivo. Proc Natl Acad Sci U S A 2004; 101: 14794–14799.

30. Basu S., Micha lsson K., Olofsson H. et al. Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 2001; 288: 275-279.

31. Batioglu-Karaaltin A., Karaaltin M.V., Ovali E. et al. In vivo tissue-engineered allogenic trachea transplantation in rabbits: a preliminary report. Stem Cell Rev. 2015; 11: 347–356.

32. Baudhuin M., Duplomb L., RuizVelasco C. et al. Key roles of the OPG-RANKRANKL system in bone oncology // Expert Rev Anticancer Ther 2007; 7 (2): 221–232.

33. Behrens P., Bitter T., Kurz B., Russlies M. Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)–5-year follow-up. Knee. 2006; 13 (3) 194–202.

34. Beier F., Ali Z. Mok D. et al. TGFbeta and PTHrP control chondrocyte proliferation by activating cyclin D1 expression. Mol Biol Cell. 2001; 12: 3852–3863.

35. Benders K.E., van Weeren P.R., Badylak S.F. et al. Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol. 2013; 31: 169–176.

36. Ben-Eliezer M., Phillip M., Gat-Yablonski G. Leptin regulates chondrogenic differentiation in ATDC5 cell-line through JAK/STAT and MAPK pathways. Endocrine. 2007; 32: 235-244.

37. Benya P.D., Shaffer J.D., Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982; 30 (1) 215–224.

38. Berg M., Ejnell H., Kovacs A. et al. Replacement of a tracheal stenosis with a tissue-engineered human trachea using autologous stem cells: a case report. Tissue Eng Part A. 2014; 20: 389–397.

39. Bernhard J.C., Vunjak-Novakovic G. Should we use cells, biomaterials, or tissue engineering for cartilage regeneration Stem Cell Res Ther 2016; 7: 56.

40. Bertram H., Boeuf S., Wachters J. et al. Matrix metalloprotease inhibitors suppress initiation and progression of chondrogenic differentiation of mesenchymal stromal cells in vitro. Stem Cells Dev. 2009; 18: 881–892.

41. Bian L., Fong J.V., Lima E.G. et al. Dynamic mechanical loading enhances functional properties of tissue-engineered cartilage using mature canine chondrocytes. Tissue Eng Part A 2010; 16: 1781–1790.

42. Bian L., Zhai D.Y., Mauck R.L. et al. Coculture of human mesenchymal stem cells and articular chondrocytes reduces hypertrophy and enhances functional properties of engineered cartilage. Tissue Eng Part A 2011; 17: 1137–1145.

43. Bisello A., Horwitz M.J., Stewart A.F. Parathyroid hormone-related protein: an essential physiological regulator of adult bone mass. Endocrinology. 2004; Aug; 145 (8): 3551–3553.

44. Bitgood M.J., McMahon A.P. Hedgehog and Bmp genes arecoexpressed at many diverse sites of cell–cell interaction in themouse embryo. Dev Biol.1995; 172: 126–138.

45. Boileau G., Tenenhouse H.S., Desgroseillers L. et al. Characterization of PHEX endopepti-dase catalytic activity: identification of parathyroid-hormone-related peptide107–139 as a sub-strate and osteocalcin, PPi and phosphate as inhibitors // Biochem J. 2001; 355 (3): 707-713.

46. Brandt K.D. Response of joint structures to inactivity and to reloading after immobilization. Arthritis Rheum. 2003; 49: 267–71.

47. Brittberg M., Lindahl A., Nilsson A. et al. Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation. N Engl J Med 1994; 331: 889-895. DOI: 10.1056/NEJM199410063311401

48. Broadus A.E., Macica C.M., Chen X. PTHrP functional domain is at the gates of endochondral bones. Ann NY Acad Sci. 2007; 1116: 65–81.

49. Bruder S.P., Jaiswal N., Haynesworth S.E. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. Journal of Cellular Biochemistry. 1997; 64 (2) 278–294.

50. Bryden A.A., Islam S., Freemont A.J. et al. Parathyroid hormone-related peptide: expression in prostate cancer bone metastases // Prostate Cancer Prostatic Dis. 2002; 5 (1): 59-62.

51. Bubendorf L., Schopfer A., Wagner U. et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum. Pathol. 2000; 31 (5): 578–583.

52. Buckley C.T., Kelly D.J. Expansion in the presence of FGF-2 enhances the functional development of cartilaginous tissues engineered using infrapatellar fat pad derived MSCs. Journal of the Mechanical Behavior of Biomedical Materials. 2012; 11: 102–111.

53. Buckwalter J.A., Mankin H.J. Articular cartilage: Tissue design and chondrocytematrix interactions. Instr Course Lect 1998; 47: 477– 486.

54. Budayr A.A., Halloran B.P., King J.C. et al. High levels of a parathyroid hormonelike protein in milk // Proc Natl Acad Sci USA 1989; 86: 7183–7185.

55. Bush P.G., Parisinos C.A., Hall A.C. The osmotic sensitivity of rat growth plate chondrocytes in situ. Clarifying the mechanisms of hypertrophy. J Cell Physiol 2008; 214: 621-629.

56. Cackowski F.C., Anderson J.L., Patrene K.D. et al. Osteoclasts areimportant for bone angiogenesis // Blood. 2010; 115 (1): 140–149.

57. Calvi L.M., Sims N.A., Hunzelman J.L. et al. Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. J Clin Invest 2001; 107: 277-286.

58. Caminal M., Peris D., Fonseca C. et al. Cartilage resurfacing potential of PLGA scaffolds loaded with autologous cells from cartilage, fat, and bone marrow in an ovine model of osteochondral focal defect. Cytotechnology 2016; 68 (4): 907–19.

59. Cao Y.L., Rodriguez A., Vacanti M. et al. Comparative study of the use of poly(glycolic acid), calcium alginate and pluronics in the engineering of autologous porcine cartilage. J Biomater Sci Polym Ed.1998; 9: 475-487.

60. Caplan A.I. Cell delivery and tissue regeneration. Journal of Controlled Release. 1990; 11 (1–3): 157–165.

61. Care A.D., Abbas S.K., Pickard D.W. et al. Stimulation of ovine placental transport of calci-um and magnesium by mid-molecule fragments of human parathyroid hormonerelated pro-tein // Exp Physiol. 1990; 75: 605–608.

62. Carter D.R., Beaupre G.S., Wong M. et al. The mechanobiology of articular cartilage development and degeneration. Clin Orthop Related Res. 2004; (427Suppl): 69–77.

63. Casado-Diaz А., Santiago Mora R., Quesada J.M. The N- and C-terminal domains of parathyroid hormone-related protein affect differently the osteogenic and adipogenic potential of human mesenchymal stem cells // Exp. Mol. Med. 2010; 42 (2). 87-98.

64. Cervellati C., Bonaccorsi G., Cremonini E. et al. Oxidative stress and bone resorption interplay as a possible trigger for postmenopausal osteoporosis. Biomed Res Int. 2014; 2014: 569563.

65. Chng S., Wong G.L., Clark J.R. Reconstruction of the trachea. Journal of reconstructive microsurgery. 2014; 30 (3): 153–162.

66. Chen J., Wang C., Lu S. et al. In vivo chondrogenesis of adult bone-marrow-derived autologous mesenchymal stem cells. Cell and Tissue Research. 2005; 319 (3): 429–438.

67. Chen S., Fu P., Cong R. et al. Strategies to minimize hypertrophy in cartilage engineering and regeneration. Genes & Diseases. 2015; 2: 76-95.

68. Chen X., Macica C., Nasiri A. et al. Mechanical regulation of PTHrP expression in entheses // Bone 2007; 41: 752–759.

69. Chen X., Macica C., Nasiri A., Broadus A.E. Regulation of Articular Chondrocyte Proliferation and Differentiation by Indian Hedgehog and Parathyroid Hormone-related Protein. Arthritis and rheumatism. 2008; 58 (12): 3788-3797. doi: 10.1002/art.23985.

70. Chen X., Macica C.M., Dreyer B.E. et al. Initial characterization of PTH-related protein gene-driven lacZ expression in the mouse. J Bone Miner Res. 2006; 20: 113–23.

71. Chen X., Macica C.M., Ng K.W., Broadus E. Stretch-induced PTH-related protein gene expression in osteoblasts. J Bone Min Res. 2005; 20: 1454–61.

72. Chirgwin J.M., Guise T.A. Skeletal metastases: decreasing tumor burden by targeting the bone microenvironment. J. Cell. Biochem. 2007; 102 (6): 1333–1342.

73. Choi K.H., Choi B.H., Park S.R. et al. The chondrogenic differentiation of mesenchymal stem cells on an extracellular matrix scaffold derived from porcine chondrocytes. Biomaterials. 2010; 31: 5355-5365.

74. Chung U.I., Schipani E., McMahon A.P., Kronenberg H.M. Indian hedgehog couples chondrogenesis to osteogenesis in endo-chondral bone development. J Clin Invest. 2001; 107: 295-304.

75. Clarke L.E., McConnell J.C., Sherratt M.J. et al. Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition, and micromechanical properties of nucleus pulposus constructs. Arthritis Research & Therapy. 2014; 16 (2): R67. doi: 10.1186/ar4505.

76. Clarke N.W., Hart C.A., Brown M.D. Molecular mechanisms of metastasis in prostate cancer // Asian Journal of Andrology. – 2009; 11: 57–67.

77. Coleman R.E. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin. Cancer Res. 2006; 12 (20 Pt 2): 6243–6249.

78. Conconi M.T., De Coppi P., Di Liddo R. et al. Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells. Transpl Int. 2005; 18: 727–734.

79. Cooke M.E., Allon A.A., Cheng T. et al. Structured three-dimensional co-culture of mesenchymal stem cells with chondrocytes promotes chondrogenic differentiation without hypertrophy. Osteoarthritis Cartilage. 2011; 19: 1210-1218.

80. Cooke M.S., Evans M.D., Dizdaroglu M., Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 2003; 17: 1195-1214.

81. Cooper M.K., Porter J.A., Young K.E., Beachy P.A. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science. 1998; 280: 1603-1607.

82. Correa D., Hesse E., Seriwatanachai D. et al. Zfp521 is a target gene and key effector of parathyroid hormone-related peptide signaling in growth plate chondrocytes. Dev Cell. 2010; 19: 533–546.

83. Crapo P.M., Gilbert T.W., Badylak S.F. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011; 32: 3233–3243.

84. Cush J.J., Splawski J.B., Thomas R., McFarlin J.E., Schulze-Koops H., Davis L.S., Fujita K., Lipsky P.E. Elevated interleukin-10 levels in patients with rheumatoid arthritis. Arthritis Rheum. 1995; 38: 96–104. doi: 10.1002/art.1780380115.

85. Cuthbertson R.M., Kemp B.E., Barden J.A. Structure study of osteostatin PTHrP[Thr107](107–139) // BiochimBiophysActa. 1999; Jun 15; 1432 (1): 64-72.

86. Cyranoski D. Chinese scientists to pioneer first human CRISPR trial. Nature. 2016; 535 (7613): 476-7. doi: 10.1038/nature.

87. Daniels K., Solursh M. Modulation of chondrogenesis by the cytoskeleton and extracellular matrix. J Cell Sci. 1991, 100: 249-254. 224

88. Danisovic L., Bohac M., Zamborsky R. et al. Comparative analysis of mesenchymal stromal cells from different tissue sources in respect to articular cartilage tissue engineering. Gen Physiol Biophys 2016; 35 (2): 207–14.

89. Darling E.M., Athanasiou K.A., Rapid phenotypic changes in passaged articular chondrocyte subpopulations, J. Orthop. Res. 2005; 23 (2): 425–432.

90. Datta N.S., Abou-Samra A.B. PTH and PTHrP signaling in osteoblasts // Cell. Signal. 2009; 21 (8): 1245–1254.

91. Datta N.S., Pettway G.J., Chen C. et al. Cyclin D1 as a target for theproliferative effects of PTH and PTHrP in early osteoblastic cells // J. Bone Miner. Res. 2007; 22 (7): 951–964.

92. de Castro L.F., Lozano D., Portal-Nunez S. et al. Comparison of the skeletal effects induced by daily administration of PTHrP (1–36) and PTHrP (107–139) to ovariectomized mice // JCellPhysiol. 2012; 227 (4): 1752-60.

93. De Coppi P., Bartsch G., Siddiqui M.M. et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007; 25 (1): 100–106.

94. De La Fuente M., Miquel J. An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des. 2009; 15: 3003–3026.

95. De La Mata J., Uy H.L., Guise T.A. et al. Interleukin-6 enhances hypercalcemia and bone resorption mediated by parathyroid hormone-related protein in vivo // J. Clin. Invest. 1995; 95 (6): 2846–2852.

96. De Lise A.M., Fischer L., Tuan R.S.: Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage. 2000, 8: 309–334. 10.1053/joca.1999.0306.

97. De Windt T.S., Saris D.B., Slaper-Cortenbach I.C. et al. Direct cell-cell contact with chondrocytes is a key mechanism in multipotent mesenchymal stromal cell-mediated chondrogenesis. Tissue Eng Part A 2015; 21 (19–20): 2536–47. doi: 10.1089/ten. TEA.2014.0673 (2015).

98. De Windt T.S., Vonk L.A., Slaper-Cortenbach I.C. et al. Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous chondrons, Stem Cells. 2017; 35 (1): 256–264.

99. Deftos L.J., Barken I., Burton D.W. et al. Direct evidence that PTHrP expression promotes prostate cancer progression in bone // Biochem Biophys Res Commun 2005; 327: 468–472.

100. Demoor M., Ollitrault D., Gomez-Leduc T. et al. Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta. 2014; 1840: 2414-2440.

101. Dennis J.E., Bernardi K.G., Kean T.J. et al. Tissue engineering of a composite trachea construct using autologous rabbit chondrocytes. J Tissue Eng Regen Med. 2018; 12: 1383–1391. doi.org/10.1002/term.2523.

102. Devys A., Lortholary A., Audran M. PTHrP and breast cancer // Bull Cancer. 2001; 88 (11): 1075–80.

103. Dikina A.D., Strobel H.A., Lai B.P. et al. Engineered cartilaginous tubes for tracheal tissue replacement via self-assembly and fusion of human mesenchymal stem cell constructs. Biomaterials. 2015; 52: 452–462. doi: 10.1016/j.biomaterials.2015.01.073.

104. Djouad F., Rackwitz L., Song Y. et al. ERK1/2 activation induced by inflammatory cytokines compromises effective host tissue integration of engineered cartilage. Tissue Eng Part A. 2009; 15 (10): 2825-35. doi: 10.1089/ten.TEA.2008.0663.

105. Dougherty K.M., Blomme E.A., Koh A.J. et al. Parathyroid hormone-related protein as a growth regulator of prostate carcinoma // Cancer Res 1999; 59 (23): 6015-22.

106. Dowthwaite G.P., Bishop J.C., Redman S.N. et al. The surface of articular cartilage contains a progenitor cell population. J Cell. Sci 2004; 117: 889–897.

107. Drissi H., Zuscik M., Rosier R., O Keefe R. Transcriptional regulation of chondrocyte maturation: Potential involvement of transcription factors in OA pathogenesis. Molec. Aspects of Med. 2005; 26: 169–79.

108. Esbrit P., Alcaraz V.J. Current perspectives on parathyroid hormone (PTH) and PTH-related protein (PTHrP) as bone anabolic therapies // Biochemical Pharmacology. 2013; 85 (10): 1417–1423.

109. Fabre D., Kolb F., Fadel E. et al. Successful tracheal replacement in humans using autologous tissues: an 8-year experience. The Annals of thoracic surgery. 2013; 96 (4): 1146–1155.

110. Fahy N., Gardner O.F.W., Alini M., Stoddart M.J. Parathyroid Hormone-Related Protein Gradients Affect the Progression of Mesenchymal Stem Cell Chondrogenesis and Hypertrophy. Tissue Engineering: Part A. 2018. doi.org/10.1089/ten.tea.2017.0337.

111. Fan J., Varshney R.R., Ren L. et al. Synovium-derived mesenchymal stem cells: A new cell source for musculoskeletal regeneration. Tissue Eng Part B 2009; 15: 75–86.

112. Fenton A.J., Kemp B.E., Hammonds R.G. et al. A potent inhibitor of osteoclastic bone resorp-tion within a highly conserved pentapeptide region of parathyroid hormone-related protein; PTHrP[107–111] // Endocrinology, 1991a. 129 (6): 3424–3426.

113. Fenton A.J., Kemp B.E., Kent G.N. et al. A carboxyl-terminal peptide from the parathyroid hormone-related protein inhibits bone resorption by osteoclasts // Endocrinology.1991b; 129 (4): 1762–1768.

114. Fiaschi-Taesch N.M., Stewart A.F. Minireview: parathyroid hormone-related protein as an intracrine factor – trafficking mechanisms and functional consequences. Endocrinology. 2003; 144 (2): 407–411.

115. Fidler I.J. The pathogenesis of cancer metastasis: the seed and soil hypothesis revisited // Nat. Rev. Cancer. 2003; 3 (6): 453–458.

116. Firestein G.S., McInnes I.B. Immunopathogenesis of Rheumatoid Arthritis. Immunity. 2017; 46: 183–196. doi: 10.1016/j.immuni.2017.02.006.

117. Fischer J., Dickhut A., Rickert M. et al. Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis. Arthritis Rheum 2010; 62: 2696–2706.

118. Fischer J., Ortel M., Hagmann S. et al. Role of PTHrP(1–34) pulse frequency versus pulse duration to enhance mesenchymal stromal cell chondrogenesis. J. Cell. Physiol. 2016; 231: 2673–2681. doi: 10.1002/jcp.25369.

119. Fischer J., Aulmann A., Dexheimer V. et al. Intermittent PTHrP (1–34) exposure augments chondrogenesis and reduces hypertrophy of mesenchymal stromal cells. Stem Cells. 2014; 23: 2513.

120. Fisher M.B., Henning E.A., Soegaard N.B. et al. Maximizing cartilage formation and integration via a trajectorybased tissue engineering approach, Biomaterials. 2014; 35 (7): 2140–2148.

121. Fosang A.J., Last K., Knauper V. et al. Degradation of cartilage aggrecan by collagenase-3 (MMP-13). Febs Letters. 1996; 380: 17-20.

122. Frieling J.S., Shay G., Lynch C.C. MMP processing of bone metastatic prostate cancer-derived PTHrP yields novel osteogenic peptides. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia (PA): AACR. Cancer Res 2015; 75 (15 Suppl): Abstract nr 2386.

123. Funato Y., Michiue T., Asashima M., Miki H. The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt-beta-catenin signalling through dishevelled. Nat Cell Biol. 2006; 8: 501-508.

124. Gao C.L., Dean R.C., Pinto A. et al. Detection of circulating prostate specific antigen expressing prostatic cells in the bone marrow of radical prostatectomy patients by sensitive reverse transcriptase polymerase chain reaction. J. Urol. 1999; 161 (4): 1070–1076.

125. Garcia-Martin A., Acitores A., Maycas M. et al. Src kinases mediate VEGFR2 transactivation by the osteostatin domain of PTHrP to modulate osteoblastic function // J. Cell. Biochem, 2013; 114: 1404–1413.

126. Garcia-Martin A., Ardura M., Maycas D. et al. Functional Roles of the Nuclear Localization Signal of Parathyroid Hormone-Related Protein (PTHrP) in Osteoblastic Cells // Mol Endocrinol 2014; 28 (6): 925-934.

127. Gelse K., Ekici A.B., Cipa F. et al. Molecular differentiation between osteophytic and articular cartilage – clues for a transient and permanent chondrocyte phenotype. Osteoarthritis and Cartilage. 2012; 20 (2): 162–171. doi: 10.1016/j.joca.2011.12.004.

128. Gibson G., Yang M. Gene editing in chondrocytes using CRISPR/CAS9. Osteoarthr Cartil 2016; 24: S2-3.

129. Goldring M.B. The role of chondrocyte in osteoarthritis. Arthritis. Rheum. 2000; 43: 1916–26.

130. Goldring M.B., Berenbaum F. The regulation of chondrocyte function by proinflammatory mediators: prostaglandins and nitric oxide. Clin Orthop Relat Res. 2004: S37–46.

131. Gomez-Aristizabal A., Sharma A., Bakooshli M.A. et al. Stage-specific differences in secretory profile of mesenchymal stromal cells (MSCs) subjected to early- vs late-stage OA synovial fluid. Osteoarthritis and Cartilage 2017; 25 (5): 737-741.

132. Gomez-Barrena E., Sanchez-Pernaute O., Largo R. et al. Sequential changes of parathyroid hormone related protein (PTHrP) in articular cartilage during progression of inflammatory and degenerative arthritis Ann Rheum Dis. 2004; 63: 917-922.

133. Gracitelli G.C., Moraes V.Y., Franciozi C.E. et al. Surgical interventions (microfracture, drilling, mosaicplasty, and allograft transplantation) for treating isolated cartilage defects of the knee in adults. Cochrane Database Syst Rev. 2016. Sep 3; 9: CD010675.

134. Griffith L.G. Naughton G. Tissue engineering–current challenges and expanding opportunities. Science, 2002; 295 (5557): 1009–1014.

135. Grill V., Hillary J., Ho P.M. et al. Parathyroid hormone-related protein: a possible endocrine function in lactation. Clin Endocrinol (Oxf). 1992; 37: 405–410.

136. Grimmer J.F., Gunnlaugsson C.B., Alsberg E. et al., Tracheal reconstruction using tissue-engineered cartilage. Archives of Otolaryngology–Head and Neck Surgery. 2004; 130 (10): 1191–1196. doi: 10.1001/archotol.130.10.1191.

137. Grimsrud C.D., Romano P.R., D Souza M. et al. BMP-6 is an autocrine stimulator for chondrocyte differentiation. J Bone Miner Res. 1999; 14: 475–482.

138. Grodzinsky A.J., Levenston M.E., Jin M., Frank E.H. Cartilage Tissue Remodeling in Response to Mechanical Forces. Annu. Rev. Biomed. Eng., 2000; 2: 691–713.

139. Guerreiro P.M., Renfro J.L., Power D.M., Canario A.V., The parathyroid hormone family of peptides: structure, tissue distribution, regulation, and potential functional roles in calcium and phosphate balance in fish // Am J Physiol Regul Integr Comp Physiol. 2007; 292: R679–R696.

140. Guise T.A., Kozlow W.M., Heras-Herzig A. et al. Molecular mechanisms of breast cancer metastases to bone // Clin Breast Cancer. 2005; 5 Suppl (2): S46-53.

141. Guo J., Chung U.I., Kondo H. et al. The PTH/PTHrP receptor can delay chondrocyte hypertrophy in vivo without activating phospholipase C. Dev Cell. 2002; 3: 183-194.

142. Guo X., Mak K.K., Taketo M.M., Yang, Y. The Wnt-catenin pathway interacts differentially with PTHrP signaling to control chondrocyte hypertrophy and final maturation. PLoS ONE 2009, 4, e6067.

143. Hall B.K., Miyake T. All for one and one for all: condensations and the initiation of skeletal development. Bioessays. 2000; 22: 138-147.

144. Han X., Guo L., Wang F., Zhu Q., Yang L. Contribution of PTHrP to mechanical strain-induced fibrochondrogenic differentiation in entheses of Achilles tendon of miniature pigs. J Biomech. 2014 Jul 18; 47 (10): 2406-14. doi: 10.1016/j.jbiomech.2014.04.022.

145. Han X., Zhuang Y., Zhang Z. et al. Regulatory Mechanisms of the Ihh/PTHrP Signaling Pathway in Fibrochondrocytes in Entheses of Pig Achilles Tendon. Stem Cells International. 2016 Article ID 8235172, doi.org/10.1155/2016/8235172.

146. Han Y.S., Bang O.S., Jin E.J. et al. High dose of glucose promotes chondrogenesis via PKCalpha and MAPK signaling pathways in chick mesenchymal cells. Cell Tissue Res. 2004; 318: 571-578.

147. Handorf A.M., Li W.-J. Induction of Mesenchymal Stem Cell Chondrogenesis Through Sequential Administration of Growth Factors Within Specific Temporal Windows. Journal of Cellular Physiology. 2014; 229: 162–171.

148. Hangody L., Fules P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am. 2003; 85 (2): 25–32.

149. Hardingham T. Cell- and tissue-based approaches for cartilage repair. Altern Lab Anim 2010; 38 (1): 35–39.

150. Hardingham T.E., Oldershaw R.A., Tew S.R. Cartilage, SOX9 and Notch signals in chondrogenesis. Journal of Anatomy. 2006; 209 (4): 469-480. doi: 10.1111/j.1469-7580.2006.00630.x.

151. Harris J.D., Siston R.A., Pan X., Flanigan D.C. Autologous chondrocyte implantation: a systematic review. J Bone Joint Surg Am. 2010; 92: 2220–33.

152. Hasler E.M., Herzog W., Wu J.Z. et al. Articular cartilage biomechanics: theoretical models, material properties, and biosynthetic response. Crit Rev Biomed Eng. 1999, 27: 415-488.

153. He F., Chen X., Pei M. Reconstruction of an in vitro tissuespecific microenvironment to rejuvenate synovium-derived stem cells for cartilage tissue engineering. Tissue Eng Part A. 2009; 15: 3809–3821.

154. Hellingman C.A., Koevoet W., van Osch G.J. Can one generate stable hyaline cartilage from adult mesenchymal stem cells? A developmental approach. J Tissue Eng Regen Med. 2012; 6 (10): 1–11. doi: 10.1002 / term. 502.

155. Hellingman C.A., Koevoet W., Kops N. et al. Fibroblast growth factor receptors in in vitro and in vivo chondrogenesis: relating tissue engineering using adult mesenchymal stem cells to embryonic development. Tissue Eng. 2010; Part A 16, 545.

156. Henderson J.E., Amizuka N., Warshawsky H. et al. Nucleolar localization of parathyroid hormone-related peptide enhances survival of chondrocytes under conditions that promote apoptotic cell death // Molecular and Cellular Biology. 1995. 15. 4064–4075.

157. Heng B.C., Cao T., Lee E.H. Directing Stem Cell Differentiation into the Chondrogenic Lineage In Vitro. Stem Cells. 2004; 22: 1152–1167.

158. Hennig T., Lorenz H., Thiel A. et al. Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP profile and is overcome by BMP-6. J Cell Physiol. 2007; 211: 682-691.

159. Henry J.G., Mitnick M., Dann P.R., Stewart A.F. Parathyroid hormone-related protein-(1–36) is biologically active when administered subcutaneously to humans. J Clin Endocrinol Metab. 1997; 82: 900–906.

160. Hill D.J., Logan A. Peptide growth factors and their interactions during chondrogenesis. Prog Growth Factor Res. 1992, 4: 45-68.

161. Hilton M.J., Tu X., Cook J. et al. Ihh controls cartilage development by antagonizing Gli3, but requires additional effectors to regulate osteoblast and vascular development // Development. 2005; 132: 4339–4351.

162. Hilton M.J., Tu X., Long F. Tamoxifen-inducible gene deletion reveals a distinct cell type associated with trabecular bone, and direct regulation of PTHrP expression and chondrocyte morphology by Ihh in growth region cartilage // Dev Biol 2007; 308: 93–105.

163. Hirai T., Chagin A.S., Kobayashi T. et al. Parathyroid hormone/parathyroid hormone-related protein receptor signaling is required for maintenance of the growth plate in postnatal life // Proc Natl Acad Sci U S A. 2011; 108 (1): 191–196.

164. Hirao M., Tamai N., Tsumaki N. et al. Oxygen tension regulates chondrocyte differentiation and function during endochondral ossification. J Biol Chem. 2006; 281: 31079–31092.

165. Holtzer H. Control of chondrogenesis in the embryo. Biophys J.1964; 4: 239-250.

166. Hook V.Y., Burton D., Yasothornsrikul S. et al. Proteolysis of ProPTHrP (1–141) by «pro-hormonethiol protease» at multibasic residues generates PTHrP-related peptides: implications for PTHrP peptide production in lung cancer cells // BiochemBiophys Res Commun. 2001; 285 (4): 932-938.

167. Horwitz M.J., Tedesco M.B., Sereika S.M. et al. Continuous PTH and PTHrP infusion causes suppression of bone formation and discordant effects on 1,25 (OH)2 vitamin D // J Bone Miner Res. 2005; 20: 1792–1803.

168. Hoshiba T., Lu H., Kawazoe N., Chen G. Decellularized matrices for tissue engineering. Expert Opin Biol Ther. 2010; 10: 1717–1728.

169. Huang W., Chung U.I., Kronenberg H.M., de Crombrugghe B. The chondrogenic transcription factor Sox9 is a target of signaling by the parathyroid hormone-related peptide in the growth plate of endochondral bones. Proc Natl Acad Sci U S A 2001; 98: 160–165.

170. Huang W., Zhou X., Lefebvre V., de Crombrugghe B. Phosphorylation of SOX9 by cyclic AMP-dependent protein kinase A enhances SOX9s ability to transactivate a Col2a1 chondrocyte-specific enhancer. Mol Cell Biol. 2000; 20: 4149-4158.

171. Hubka K.M., Dahlin R.L., Meretoja V.V. et al. Enhancing Chondrogenic Phenotype for Cartilage Tissue Engineering: Monoculture and Coculture of Articular Chondrocytes and Mesenchymal Stem Cells. Tissue Engineering Part B: Reviews 10.1089/ten.teb.2014.003-4.2014.

172. Hundt W., Steinbach S., O Connell-Rodwell C.E. et al. The effect of high intensity focused ultrasound on luciferase activity on two tumor cell lines in vitro, under the control of a CMV promoter. Ultrasonics. 2009; 49: 312-318. doi: 10.1186/ar4025.

173. Hwang N.S., Varghese S., Puleo C. et al. Morphogenetic signals from chondrocytes promote chondrogenic and osteogenic differentiation of mesenchymal stem cells. J Cell Physiol. 2007; 212: 281–284.

174. Hwang N.S., Varghese S., Zhang Z., Elisseeff J., Chondrogenic differentiation of human embryonic stem cellderived cells in arginine-glycine-aspartate-modified hydrogels. Tissue Engineering. 2006; 12 (9): 2695–2706.

175. Iddon J., Bundred N.J., Hoyland J. et al. Expression of parathyroid hormone-related protein and its receptor in bone metastases from prostate cancer // The Journal of pathology. 2000; 191: 170–174.

176. Inada M., Wang Y.M., Byrne M.H. et al. Critical roles for collagenase-3 (Mmp13) in development of growth and in endochondral plate cartilage ossification. Proc Natl Acad Sci U S A. 2004; 101: 17192–17197.

177. Incardona J.P., Gaffield W., Kapur R.P., Roelink H. The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development. 1998; 125: 3553–3562.

178. Isomaki P., Luukkainen R., Saario R., Toivanen P., Punnonen J. Interleukin-10 functions as an antiinflammatory cytokine in rheumatoid synovium. Arthritis Rheum. 1996; 39: 386–395. doi: 10.1002/art.1780390306.

179. Iwamoto M., Shimazu A., Pacifici M. Regulation of chondrocyte maturation by fibroblast growth factor-2 and parathyroid hormone. J Orthop Res. 1995; 13: 838–845.

180. Jacob K.D., Noren Hooten N., Trzeciak A.R., Evans M.K. Markers of oxidant stress that are clinically relevant in aging and age-related disease. Mech Ageing Dev 2013; 134: 139–157.

181. Jiang J., Leong N.L., Mung J.C. et al. Interaction between zonal populations of articular chondrocytes suppresses chondrocyte mineralization and this process is mediated by PTHrP. Osteoarthritis and Cartilage. 2008; 16 (1): 70-82.

182. Jikko A., Kato Y., Hiranuma H. et al. Inhibition of chondrocyte terminal differentiation and matrix calcification by soluble factors released by articular chondrocytes. Calcif Tissue Int. 1999; 65: 276–279.

183. Jilka R.L., Almeida M., Ambrogini E. et al. Decreased oxidative stress and greater bone anabolism in the aged, when compared to the young, murine skeleton with parathyroid hormone administration. Aging Cell. 2010; 9: 851–867.

184. Jin R., Sterling J.A., Edwards J.R. et al. Activation of NF-kappa B signaling promotes growth of prostate cancer cells in bone // PLoS One. 2013; 8 (4): e 60983.

185. Johnson R.W., Nguyen M.P., Padalecki S.S. et al. TGF- β promotion of Gli2-induced expression of parathyroid hormone-related protein, an important osteolytic factor in bone metastasis, is independent of canonical Hedgehog signaling. Cancer Res. 2011; 71: 822–831.

186. Johnstone B., Hering T.M., Caplan A.I. et al. In vitro chondrogenesis of bone marrowderived mesenchymal progenitor cells. Exp Cell Res. 1998; 238, 265.

187. Jones B.A., Pei M. Synovium-derived stem cells: a tissuespecific stem cell for cartilage engineering and regeneration. Tissue Eng Part B Rev. 2012; 18: 301–311.

188. Jonnalagadda U.S., Hill M., Messaoudi W. et al. Tare Acoustically modulated biomechanical stimulation for human cartilage tissue engineering. Lab Chip. 2018, 18, 473-485. DOI: 10.1039/c7lc01195d.

189. Kafienah W., Mistry S., Dickinson S.C. et al. Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis Rheum. 2007; 56: 177–187.

190. Kalinowski L., Dobrucki L.W., Malinski T. Nitric oxide as a second messenger in parathyroid hormone-related protein signaling. J Endocrinol. 2001; 170: 433–440.

191. Kamil S.H., Vacanti M.P., Vacanti C.A., Eavey R.D. Microtia chondrocytes as a donor source for tissue-engineered cartilage. Laryngoscope 2004; 114 (12): 2187–90.

192. Kang N., Liu X., Yan L. et al. Different ratios of bone marrow mesenchymal stem cells and chondrocytes used in tissue-engineered cartilage and its application for human earshaped substitutes in vitro. Cells Tissues Organs. 2013; 198 (5): 357–66.

193. Kanichai M., Ferguson D., Prendergast P.J., Campbell V.A. Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: a role for AKT and hypoxiainducible factor (HIF)-1alpha. J Cell Physiol. 2008; 216: 708-715.

194. Kaplan R.N., Psaila B., Lyden D. Bone marrow cells in the pre-metastatic niche : within bone and beyond. Cancer Metastasis Rev. 2006; 25 (4): 521–529.

195. Karaplis A.C., Luz A., Glowacki J. et al. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene // Genes Dev. 1994; 8: 277–289.

196. Karp S.J., Schipani E., St-Jacques B. et al. Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and -independent pathways. Development. 2000, 127: 543–548.

197. Kawabata M., Imamura T., Miyazono K. Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev. 1998; 9: 49-61.

198. Kawashima-Ohya Y., Satakeda H., Kuruta Y. et al. Effects of parathyroid hormone (PTH) and PTH-related peptide on expressions of matrix metalloproteinase-2, -3, and -9 in growth plate chondrocyte cultures. Endocrinology. 1998, 139, 2120–2127.

199. Kawato Y., Hirao M., Ebina K. et al. Nkx3.2- induced suppression of Runx2 is a crucial mediator of hypoxia-dependent maintenance of chondrocyte phenotypes. Biochem Biophys Res Commun. 2011; 416: 205-210.

200. Keller B., Yang T., Chen Y. et al. Interaction of TGF β and BMP signaling pathways during chondrogenesis. PLoS One. 2011; 6 (1): e16421.

201. Kelly T., Suva L.J., Huang Y. et al. Expression of heparanase by primary breast tumors promotes bone resorption in the absence of detectable bone metastases. Cancer Res. 2005; 65 (13): 5778–5784.

202. Kelly T., Suva L.J., Nicks K.M. et al. Tumor-derived syndecan-1 mediates distal crosstalk with bone that enhances osteoclastogenesis. J. Bone Miner. Res. 2010; 25 (6): 1295–1304.

203. Kelly T.N., Ng K.W., Wang C.C.-B. et al. Spatial and temporal development of chondroctye-seeded agarose constructs in free-swelling and dynamically loaded cultures. J Biomech. 2006; 39: 1489–1497.

204. Khosla S., Melton L.J., Riggs B.L. The unitary model for estrogen deficiency and the pathogenesis of osteoporosis: is a revision needed  J Bone Miner Res. 2011; 26: 441-451.

205. Kil S.J. Carlin C., Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. Journal of Cellular Physiology. 2000; 185 (1): 98–106.

206. Kim J.H., Lee M.C., Seong S.C. et al. Enhanced proliferation and chondrogenic differentiation of human synovium-derived stem cells expanded with basic fibroblast growth factor. Tissue Eng. Part A 2011; 17: 991–1002.

207. Kim Y.J., Kim H.J., Im G.I. PTHrP promotes chondrogenesis and suppresses hypertrophy from both bone marrow-derived and adipose tissue-derived MSCs. Biochem Biophys Res Commun. 2008; 373: 104-108.

208. Kingsley D.M. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 1994; 8 (2): 133- 146.

209. Kirsch T., Swoboda B., Nah H. Activation of annexin II and V expression, terminal differentiation, mineralization and apoptosis in human osteoarthritic cartilage. Osteoarthritis Cartilage. 2000; 8: 294– 302.

210. Kloss F.R., Gassner R., Preiner J. et al., The role of oxygen termination of nanocrystalline diamond on immobilisation of BMP-2 and subsequent bone formation. Biomaterials. 2008; 29 (16): 2433–2442.

211. Knutsen G., Drogset J.O., Engebretsen L. et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years // J. Bone Joint Surg. Am. 2007; 89 (10): 2105-2112.

212. Ko C.Y., Ku K.L., Yang S.R. et al. In vitro and in vivo co-culture of chondrocytes and bone marrow stem cells in photocrosslinked PCLPEG-PCL hydrogels enhances cartilage formation. J Tissue Eng Regen Med. 2016; 10 (10): E485–96.

213. Kobayashi T., Chung U.I., Schipani E. et al. PTHrP and indian hedgehog control differentiation of growth plate chondrocytes at multiple steps. Development. 2002; 129: 2977-2986.

214. Kobayashi T., Soegiarto D.W., Yang Y. et al. Indian hedgehog stimulates periarticular chondrocyte differentiation to regulate growth plate length independently of PTHrP. J Clin Invest. 2005; 115: 1734-1742.

215. Kohno H., Shigeno C., Kasai R., Akiyama H., Iida H., Tsuboyama T., Sato K., Konishi J., Nakamura T. Synovial fluids from patients with osteoarthritis and rheumatoid arthritis contain high levels of parathyroid hormone-related peptide. J. Bone Miner. Res. 1997; 12: 847–854. doi: 10.1359/jbmr.1997.12.5.847.

216. Kojima K., Bonassar L.J., Roy A.K. et al. A composite tissue-engineered trachea using sheep nasal chondrocyte and epithelial cells. FASEB J.2003; 17: 823-828

217. Komura M., Komura H., Otani Y. et al. The junction between hyaline cartilage and engineered cartilage in rabbits. The Laryngoscope. 2013; 123 (6): 1547–1551.

218. Kovacs C.S. Calcium and bone metabolism in pregnancy and lactation // J Clin Endocrinol Metab. 2001; 86: 2344–2348.

219. Kovacs C.S. The role of PTHrP in regulating mineral metabolism during pregnancy, lactation, and fetal/neonatal development clinical reviews in bone and mineral metabolism. 2014; 12 (3): 142–164.

220. Kovacs C.S., Lanske B., Hunzelman J.L. et al. Parathyroid hormone-related peptide (PTHrP) regulates fetal-placental calcium transport through a receptor distinct from the PTH/PTHrP receptor // Proc. Nat. Acad. Sci. USA. 1996; 93 (26): 15233-15238.

221. Kozhemyakina E., Cohen T., Yao T.P., Lassar A.B. Parathyroid hormone-related peptide represses chondrocyte hypertrophy through a protein phosphatase 2A/histone deacetylase 4/MEF2 pathway // Mol Cell Biol.2009; 29: 5751–5762.

222. Koziel L., Wuelling M., Schneider S., Vortkamp A. Gli3 acts as a repressor downstream of Ihh in regulating two distinct steps of chondrocyte differentiation // Development. 2005; 132: 5249–5260.

223. Kronenberg H.M. Developmental regulation of the growth plate. Nature. 2003; 423: 332–336.

224. Kronenberg H.M. PTHrP and skeletal development // Annals of the New York Academy of Sciences, 2006; 1068 (1): 1–13. DOI: 10.1196/annals.1346.002.

225. Kronenberg H.M., Lee K., Lanske B.M.K., Segre G.V. Para-thyroid hormone–related protein and Indian hedgehog controlthe pace of cartilage differentiation. J Endocrinol. 1997; 154: S39–S45.

226. Kubosch E.J., Heidt E., Bernstein A. et al. The trans-well coculture of human synovial mesenchymal stem cells with chondrocytes leads to self-organization, chondrogenic differentiation, and secretion of TGFb. Stem Cell Res Ther. 2016; 7: 64.

227. Kudo S. Mizuta H., Takagi K., Hiraki Y. Cartilaginous repair of full-thickness articular cartilage defects is induced by the intermittent activation of PTH/PTHrP signaling. Osteoarthritis and Cartilage. 2011; 19 (7): 886-894.

228. Kunisaki S.M., Freedman D.A., Fauza D.O. Fetal tracheal reconstruction with cartilaginous grafts engineered from mesenchymal amniocytes. Journal of pediatric surgery. 2006; 41 (4): 675–682.

229. Kuo C.K. Tuan R.S., Tissue engineering with mesenchymal stem cells, IEEE Engineering in Medicine and Biology Magazine. 2003; 22 (5): 51–56.

230. Kuo P.L., Liao S.H., Hung J.Y. et al. Micro RNA-33a functions as
a bone metastasis suppressor in lung cancer by targeting parathyroid hormone related protein // Biochim Biophys Acta. 2013; 1830 (6): 3756-66.

231. Kwon T.G., Zhao X., Yang Q. et al. Physical and functional interactions between Runx2 and HIF-1alpha induce vascular endothelial growth factor gene expression. J Cell Biochem. 2011; 112: 3582-3593.

232. Langley R.R., Fidler I.J. The seed and soil hypothesis revisited – the role of tumor–stroma interactions in metastasis to different organs. Int //
J. Cancer. 2011; 128 (11): 2527–2535.

233. Lanske B., Amling M., Neff L. et al. Ablation of the PTHrP gene or the PTH/PTHrP receptor gene leads to distinct abnormalities in bone development // J Clin Invest. 1999; 104: 399–407.

234. Lanske B., Karaplis A.C., Lee K. et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science. 1996; 273: 613–22.

235. Lee J.M., Im G.I. PTHrP isoforms have differing effect on chondrogenic differentiation and hypertrophy of mesenchymal stem cells. Biochem Biophys Res Commun. 2012; 421: 819-824.

236. Lee J.S. Im, G.I. Influence of chondrocytes on the chondrogenic differentiation of adipose stem cells. Tissue engineering. Part A 2010; 16, 3569–3577, doi: 10.1089/ten. TEA.2010.0218.

237. Lee K., Deeds J.D., Segre G.V. Expression of PTHrP and its receptor mRNA during fetal development of rats. Endocrinology.1995; 136: 453–463.

238. Lee W.Y.-W., Wang B. Cartilage repair by mesenchymal stem cells: Clinical trial update and perspectives. Journal of Orthopaedic Translation. 2017; 9: 76-88. doi.org/10.1016/j. jot.2017.03.005.

239. Lettry V., Hosoya K., Takagi S., Okumura M. Coculture of equine mesenchymal stem cells and mature equine articular chondrocytes results in improved chondrogenic differentiation of the stem cells. Jpn J Vet Res. 2010; 58: 5-15.

240. Li J., Karaplis A.C., Huang D.C. et al. PTHrP drives breast tumor initiation, progression, and metastasis in mice and is a potential therapy target //
J. Clin. Invest. 2011; 121 (12): 4655–4669.

241. Li M., Zhao L., Liu J. et al. Hydrogen peroxide induces G2 cell cycle arrest and inhibits cell proliferation in osteoblasts. Anat Rec (Hoboken). 2009; 292: 1107–1113.

242. Li X., Loberg R., Liao J. et al. A destructive cascade mediated by CCL2 facilitates prostate cancer growth in bone. Cancer Res. 2009; 69 (4): 1685–1692.

243. Li Y., Ahrens M.J., Wu A. et al. Calcium/calmodulindependent protein kinase II activity regulates the proliferative potential of growth plate chondrocytes. Development. 2011; 138: 359–370.

244. Liang X., Ding Y., Zhang Y. et al. Paracrine mechanisms of mesenchymal stem cellbased therapy: current status and perspectives. Cell Transpl. 2014; 23 (9): 1045-59.

245. Liao J., Li X., Koh A.J. et al. Tumor expressed PTHrP facilitates prostate cancerinduced osteoblastic lesions // Int. J. Cancer. 2008; 123 (10): 2267–2278.

246. Lima E.G., Bian L., Ng K.W. et al. The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3. Osteoarthr Cartil. 2007; 15: 1025–1033.

247. Linkhart T.A., Mohan S., Baylink D.J., Growth factors for bone growth and repair: IGF, TGF βand BMP, Bone.1996; 19 (1): S1–S12.

248. Liu X., Sun H., Yan D. et al. In vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes. Biomaterials. 2010; 31 (36): 9406– 14.

249. Liu Y., Chen F., Liu W. et al. Repairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte engineered cartilage. Tissue Eng. 2002; 8 (4): 709–721.

250. Liu Y., He L., Tian J. Effect of basic fibroblast growth factor and parathyroid hormone-related protein on early and late chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells induced by transforming growth factor beta 1. Chinese Journal of Reparative and Reconstructive Surgery. 2013, 27 (2): 199-206.

251. Liua Y., Zhoua G., Cao Y. Recent Progress in Cartilage Tissue Engineering–Our Experience and Future Directions. Engineering 2017; 3 (1): 28–35.

252. Loberg R.D., Gayed B.A., Olson K.B., Pienta K.J. A paradigm for the treatment of prostate cancer bone metastases based on an understanding of tumor cell–microenvironment interactions // J. Cell. Biochem. 2005; 96 (3): 439–446.

253. Lopez-Herradon A., Portal-Nunez S., Garcia-Martin A. et al., Inhibition of the canonical Wnt pathway by high glucose can be reversed by parathyroid hormone-related protein in osteoblastic cells // J. Cell. Biochem. 2013; 114: 1908–1916.

254. Loveys L.S., Gelb D., Hurwitz S.R. et al. Effects of parathyroid hormone-related peptide on chickgrowth plate chondrocytes. J Orthop Res. 1993; 11: 884–891.

255. Luo X., Liu Y., Zhang Z. et al. Long-term functional reconstruction of segmental tracheal defect by pedicled tissue-engineered trachea in rabbits. Biomaterials. 2013; 34: 3336–3344.

256. Luo X., Zhou G., Liu W. et al. In vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage. Biomed Mater. 2009; 4 (2): 025006.

257. Lynch C.C., Hikosaka A., Acuff H.B. et al. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell. 2005; 7 (5): 485–496.

258. Macica C., Liang G., Nasiri A., Broadus A.E. Genetic Evidence that Parathyroid Hormone-related Protein Regulates Articular Chondrocyte Maintenance. Arthritis and rheumatism. 2011; 63 (11): 3333–3343. doi: 10.1002/art.30515.

259. MacLean H.E., Guo J., Knight M.C. et al. The cyclin-dependent kinase inhibitor p57 (Kip2) mediates proliferative actions of PTHrP in chondrocytes. J Clin Invest. 2004; 113: 1334–1343.

260. Macmull S., Parratt M.T., Bentley G. et al. Autologous chondrocyte implantation in the adolescent knee. Am J Sports Med 2011; 39: 1723–30.

261. Mak I.W., Turcotte R.E., Ghert M. Parathyroid hormone-related protein (PTHrP) modulates adhesion, migration and invasion in bone tumor cells // Bone. 2013; 55 (1): 198-207.

262. Mak K.K., Kronenberg H.M., Chuang P.T. et al. Indian hedgehog signals independently of PTHrP to promote chondrocyte hypertrophy. Development. 2008, 135: 1947–1956.

263. Mamillapalli R., VanHouten J., Zawalich W., Wysolmerski J. Switching of Gprotein usage by the calcium-sensing receptor reverses its effect on parathyroid hormone-related protein secretion in normal versus malignant breast cells. J Biol Chem. 2008; 283: 24435–24447.

264. Manolagas S.C. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010; 31: 266-300.

265. Marfia G., Campanella R., Navone S.E. et al. Potential use of human adipose mesenchymal stromal cells for intervertebral disc regeneration: a preliminary study on biglycandeficient murine model of chronic disc degeneration. Arthritis Research & Therapy. 2014; 16 (5): 457. doi: 10.1186/s13075-014-0457-5.

266. Marino R. Growth plate biology: new insights // Curr Opin Endocrinol Diabetes Obes. 2011; 18: 9–13.

267. Marlovits S., Zeller P., Singer P. et al. Cartilage repair: generations of autologous chondrocyte transplantation. Eur. J. Radiol. 2006; 57 (1) 24–31.

268. Martin T.J. Osteoblast-derived pthrp is a physiological regulator of bone formation. The Journal of Clinical Investigation. 2005; 115: 2322–2324. https://doi. org/10.1172/JCI26239.

269. Martin T.J. Parathyroid Hormone-Related Protein, Its Regulation of Cartilage and Bone Development, and Role in Treating Bone Diseases // Physiological Reviews. 2016; 96 (3): 831–871.

270. Martinez M.E., Garcia-Ocana A., Sanchez et al. C-Terminal Parathyroid Hormone-Related Protein Inhibits Proliferation and Differentiation of Human Osteoblast-like Cells // J Bone Miner Res. 1997; 12: 778–785.

271. Mau E., Whetstone H., Yu C. et al. PTHrP regulates growth plate chondrocyte differentiation and proliferation in a Gli3 dependent manner utilizing hedgehog ligand dependent and independent mechanisms. Dev Biol. 2007; 305 (1): 28-39.

272. Mauck R.L., Hung C.T., Ateshian G.A. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: Implications for articular cartilage biosynthesis and tissue engineering. J Biomech Eng. 2003; 125: 602–614.

273. Mauck R.L., Seyhan S.L., Ateshian G.A. et al. Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann Biomed Eng. 2002; 30: 1046–1056.

274. Mauck R.L., Soltz M.A., Wang C.C. et al. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyteseeded agarose gels. J Biomech Eng. 2000; 122: 252–260.

275. McCauley L.K., Martin T.J. Twenty-five years of PTHrP progress from cancer hormone to multi-functional cytokine // J. Bone Miner. Res. 2012; 27 (6): 1231–1239.

276. Melgarejo-Ramirez Y., Sanchez-Sanchez R., Garcia-Lopez J. et al. Characterization of pediatric microtia cartilage: a reservoir of chondrocytes for auricular reconstruction using tissue engineering strategies. Cell Tissue Bank. 2016; 17 (3): 481–489.

277. Miao D., He B., Jiang Y. et al. Osteoblast-derived PTHrP is a potent endogenousbone anabolic agent that modifies the therapeutic efficacy of administered PTH 1–34 // J Clin Invest. 2005; 115: 2402–2411.

278. Miao D., He B., Karaplis A.C. Parathyroid hormone is essential for normal fetal bone formation // J. Clin. Invest. 2002; 109: 1173–1182.

279. Miao D., Li J., Xue Y. et al. Parathyroid hormone-related peptide is required for increased trabecular bone volume in parathyroid hormone-null mice // Endocrinology. 2004; 145: 3554–3562.

280. Mikami Y., Asano M., Honda M.J., Takagi M. Bone morphogenetic protein 2 and dexamethasone synergistically increase alkaline phosphatase
levels through JAK/STAT signaling in C3H10T1/2 cells. J Cell Physiol. 2010; 223: 123-133.

281. Minina E. Kreschel C. Naski M.C. et al. Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell. 2002; 3: 439–449.

282. Minina E., Wenzel H.M., Kreschel C. et al. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development. 2001; 128: 4523–4534.

283. Mo X.T., Guo S.C., Xie H.Q. et al. Variations in the ratios of co-cultured mesenchymal stem cells and chondrocytes regulate the expression of cartilaginous and osseous phenotype in alginate constructs. Bone. 2009; 45: 42-51.

284. Mobasheri A., Kalamegame G., Musumecif G., Batt M.E. Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions. Naturitas. 2014; 78: 188–198.

285. Mody N., Parhami F., Sarafian T.A., Demer L.L. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med. 2001; 31: 509-519.

286. Mollon B., Kandel R., Chahal J., Theodoropoulos J. The clinical status of cartilage tissue regeneration in humans. Osteoarthritis Cartilage 2013; 21 (12): 1824–1833.

287. Morris M.J., Scher H.I. Clinical Approaches to Osseous Metastases in Prostate Cancer. The Oncologist. 2003; 8: 161–173.

288. Mrugala D., Dossat N., Ringe J. et al. Gene expression profile of multipotent mesenchymal stromal cells: Identification of pathways common to TGF beta3/BMP2-induced chondrogenesis. Cloning Stem Cells. 2009; 11: 61-76.

289. Mueller M.B., Fischer M., Zellner J. et al. Effect of parathyroid hormone-related protein in an in vitro hypertrophy model for mesenchymal stem cell chondrogenesis. Int Orthop. 2013; 37: 945-951.

290. Mueller M.B., Tuan R.S. Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis Rheum. 2008; 58: 1377–1388.

291. Mundlos S., Olsen B.R. Heritable diseases of the skeleton. Part II: Molecular insights into skeletal development-matrix components and their homeostasis. Faseb J. 1997b; 11: 227-233.

292. Mundlos S., Olsen B.R. Heritable diseases of the skeleton. Part I: Molecular insights into skeletal development-transcription factors and signaling pathways. Faseb J. 1997a; 11: 125-132.

293. Mundy G.R. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002; 2: 584–593.

294. Nacher-Juan J, Terencio M.C., Alcaraz M.J., Ferrandiz M.L. Osteostatin Inhibits Collagen-Induced Arthritis by Regulation of Immune Activation, Pro-Inflammatory Cytokines, and Osteoclastogenesis. Int J Mol Sci. 2019 Aug 7; 20 (16): 3845. doi: 10.3390/ijms20163845.

295. Nakashima T., Hayashi M., Fukunaga T., et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 2011; 17 (10): 1231–1234.

296. Nazempour A., Van Wie B.J. Chondrocytes, mesenchymal stem cells, and their combination in articular cartilage regenerative medicine. Ann Biomed Eng. 2016; 44: 1325–1354.

297. Ng J.J., Wei Y., Zhou B. et al. Recapitulation of physiological spatiotemporal signals promotes in vitro formation of phenotypically stable human articular cartilage, Proc. Natl. Acad. Sci. U.S.A. 2017; 114 (10): 2556–2561.

298. Nguyen D.X., Bos P.D., Massague J., Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer. 2009; 9 (4): 274–284.

299. Nissenson R.A., Parathyroid hormone (PTH)/PTHrP receptor mutations in human chondrodysplasia. Endocrinology. 1998; 139: 4753 – 4755.

300. Niswander L. Interplay between the molecular signals that control vertebrate limb development. Int J Dev Biol. 2002; 46: 877–81.

301. Nixon A.J., Rickey E., Butler T.J. et al. A chondrocyte infiltrated collagen type I/III membrane (MACI(R) implant) improves cartilage healing in the equine patellofemoral joint model. Osteoarthr Cartil. 2015; 23 (4): 648–60.

302. Nojiri H., Saita Y., Morikawa D. et al. Cytoplasmic superoxide causes bone fragility owing to low-turnover osteoporosis and impaired collagen cross-linking. J Bone Miner Res. 2011; 26: 2682-2694.

303. Nomoto M., Nomoto Y., Tada Y. et al. Bioengineered trachea using autologous chondrocytes for regeneration of tracheal cartilage in a rabbit model. Laryngoscope. 2013; 123: 2195–2201.

304. O Driscoll S.W., Articular cartilage regeneration using periosteum, Clinical Orthopaedics and Related Research.1999; 367: S186–S203.

305. O Keefe R.J., Loveys L.S., Hicks D.G. et al. Differential regulation of type-II and type-X collagen synthesis by parathyroid hormone-related protein in chick growth-plate chondrocytes. J Orthop Res. 1997; 15: 162–174.

306. Occhetta P., Studle C., Barbero A., Martin I. Learn, simplify and implement: developmental re-engineering strategies for cartilage repai, Swiss Med. Wkly. 2016; 146; doi: 10.4414/smw.2016.14346.

307. Ogawa H., Kozhemyakina E., Hung H.-H. et al. Mechanical motion promotes expression of Prg4 in articular cartilage via multiple CREB-dependent, fluid flow shear stressinduced signaling pathways. Genes Dev. 2014; 28: 127–139.

308. Okano K., Tsukazaki T., Ohtsuru A. et al. Expression of parathyroid hormone-related peptide in human osteoarthritis. J Orthop Res 1997; 15: 175–180.

309. Okazaki M., Ferrandon S., Vilardaga J.P. et al. Prolonged signaling at the parathyroid hormone receptor by peptide ligands targeted to a specific receptor conformation // Proc Natl Acad Sci USA. 2008; 105: 16525–16530.

310. Omlor G.W., Fischer J., Kleinschmitt K. et al. Treatment of the degenerated intervertebral disc; closure, repair and regeneration of the annulus fibrosus. European Spine Journal. 2014; 23 (9): 1837–1847.

311. Omori K., Nakamura T., Kanemaru S. et al. Regenerative medicine of the trachea: the first human case. The Annals of otology, rhinology, and laryngology. 2005; 114 (6): 429–433.

312. Ongkeko W.M., Burton D., Kiang A. et al. Parathyroid Hormone Related-Protein Promotes Epithelial-to-Mesenchymal Transition in Prostate Cancer. PLoS ONE 2014; 9 (1): e85803.

313. Orth P., Cucchiarini M., Zurakowski D. et al. Parathyroid hormone [1–34] improves articular cartilage surface architecture and integration and subchondral bone reconstitution in osteochondral defects in vivo. Osteoarthritis Cartilage. 2013; 21: 614–624.

314. Pacifici M., Koyama E., Iwamoto M. Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res. 2005; 75: 237–48.

315. Paek H.J., Kim C., Tuan R.S. Stem Cell-Based Repair and Regeneration of Articular Cartilage. J Stem Cell Res Ther. 2017; 2 (6): 00082. DOI: 10.15406/jsrt.2017.02.00082.

316. Paget S. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev. 1989; 8 (2): 98–101.

317. Park C.W., Kim K.S., Bae S. et al. Cytokine secretion profiling of human mesenchymal stem cells by antibody array. Int J Stem Cells. 2009; 2 (1): 59-68.

318. Park S., Woo D.G., Sun B.K. et al., In vitro and in vivo test of PEG/PCLbased hydrogel scaffold for cell delivery application. Journal of Controlled Release. 2007; 124 (1–2): 51–59.

319. Pateder D.B., Rosier R.N., Schwarz E.M. et al. PTHrP expression in chondrocytes, regulation by TGF-beta, and interactions between epiphyseal and growth plate chondrocytes. Exp Cell Res. 2000; 256, 555-562.

320. Patent CA2213261C – Therapeutics of osteoarthritis andTherapeutics of osteoarthritis and inflammatory joint disease. Kato Y., Iwamoto M., Koike T.

321. Patent WO1997035607A1 Methods of tissue induction using a combination of bone morphogenetic protein and parathyroid hormone-related peptide. Hattersley G., Rosen V.A.

322. Patterson T.E., Kumagai K., Griffith L., Muschler G.F. Cellular strategies for enhancement of fracture repair, The Journal of Bone and Joint Surgery. 2008; 90 (1): 111–119.

323. Pei M., Chen D., Li J., Wei L. Histone deacetylase 4 promotes TGF-beta1-induced synovium-derived stem cell chondrogenesis but inhibits chondrogenically differentiated stem cell hypertrophy. Differentiation. 2009; 78: 260-268.

324. Pei M., Li J.T., Shoukry M., Zhang Y. A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering. Eur Cell Mater. 2011; 22: 333–343.

325. Pelosi M., Lazzarano S., Thoms B.L., Murphy C.L. Parathyroid hormonerelated protein is induced by hypoxia and promotes expression of the differentiated phenotype of human articular chondrocytes. Clin Sci (Lond). 2013; 125 (10): 461-70. doi: 10.1042/CS20120610

326. Pelttari K, Steck E, Richter W. The use of mesenchymal stem cells for chondrogenesis. Injury. 2008; 39 Suppl 1: S58–65. doi: 10.1016/j.injury.2008.01.038.

327. Pelttari K., Lorenz H., Boeuf S. et al. Secretion of matrix metalloproteinase 3 by expanded articular chondrocytes as a predictor of ectopic cartilage formation capacity in vivo, Arthritis Rheum. 2008; 58 (2): 467–474.

328. Pelttari K., Winter A., Steck E. et al. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum. 2006; 54: 3254-3266.

329. Peroglio M., Douma L.S., Caprez T.S. et al., Intervertebral disc response to stem cell treatment is conditioned by disc state and cell carrier: An ex vivo study. Journal of Orthopaedic Translation. 2017; 9: 43–51. doi.org/10.1016/j.jot.2017.03.003.

330. Peroglio M., Eglin D., Benneker L.M. et al. Thermoreversible hyaluronan-based hydrogel supports in vitro and ex vivo disc-like differentiation of human mesenchymal stem cells. Spine J. 2013; 13 (11), 1627–1639.

331. Peterson L., Minas T., Brittberg M. et al. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee, Clin. Orthop. Relat. Res. 2000; 374: 212–234.

332. Peterson L., Minas T., Brittberg M., Lindahl A. Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years J. Bone Joint Surg. Am. 2003; 85-A (Suppl 2): 17–24.

333. Pfander D., Swoboda B., Kirsch T. Expression of early and late differentiation markers (proliferating cell nuclear antigen, syndecan-3, annexin VI, and alkaline phosphatase) by human osteoarthritic chondrocytes. Am J Pathol 2001; 159: 1777–1783.

334. Philbrick W.M., Wysolmersli J.J., Galbraith S. et al. Defining the roles of the parathyroid hormone-related protein in normal physiology // Physiological Reviews. 1996; 76, 127–173.

335. Pinheiro P.L.C., Cardoso J.C.R., Gomes A.S. et al. Gene structure, transcripts and calciotropic effects of the PTH family of peptides in Xenopus and chicken // BMCEvol Biol. 2010; 10: 373–379.

336. Pioszak A.A., Parker N.R., Gardella T.J., Xu H.E. Structural basis for parathyroid hormone-related protein binding to the parathyroid hormone receptor and design of conformation-selective peptides // J Biol Chem. 2009; 284: 28382–28391.

337. Pittenger M.F., Mackay A.M., Beck S.C. et al., Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284 (5411): 143–147.

338. Pizzute T., Lynch K., Pei M. Impact of tissue-specific stem cells on lineage-specific differentiation: a focus on the musculoskeletal system. Stem Cell Rev. 2014. http: //dx.doi. org/10.1007/s12015-014-9546-8.

339. Platas J., Guillen M.I., Gomar F., Castejon M.A., Esbrit P., Alcaraz M.J. Anti-senescence and Anti-inflammatory Effects of the C-terminal Moiety of PTHrP Peptides in OA Osteoblasts. J. Gerontol. A Biol. Sci. Med. Sci. 2016; 172: 624–631. doi: 10.1093/gerona/glw100.

340. Portal-Nunez S., Ardura J.A., Lozano D. et al. Parathyroid hormone-related protein exhibits antioxidant features in osteoblastic cells through its N-terminal and osteostatin domains. Bone Joint Res. 2018 Jan; 7 (1): 58–68. doi: 10.1302/2046-3758.71.BJR-2016-0242.R2.

341. Powell W.F., Jr, Barry K.J., Tulum I. et al. Targeted ablation of the PTH/PTHrP receptor in osteocytes impairs bone structure and homeostatic calcemic responses. J Endocrinol. 2011; 209: 21–32.

342. Preston D.M., Torrens J.I., Harding P. et al. Androgen deprivation in men with prostate cancer is associated with an increased rate of bone loss. Prostate Cancer and Prostatic Diseases. 2002; 5: 304-310.

343. Provot S., Kempf H., Murtaugh L.C. et al. Nkx3.2/Bapx1 acts as a negative regulator of chondrocyte maturation. Development. 2006; 133 (4), 651-662. DOI: 10.1242/dev.02258.

344. Quintana L., Zur Nieden N.I., Semino C.E. Morphogenetic and regulatory mechanisms during developmental chondrogenesis: new paradigms for cartilage tissue engineering. Tissue Eng Part B Rev. 2008; 15: 29-41.

345. Rabbani S.A., Gladu J., Harakidas P. et al. Over-production of parathyroid hormone-related peptide results in increased osteolytic skeletal metastasis by prostate cancer cells in vivo // Int J Cancer. 1999; 80: 257–264.

346. Rahim F., Hajizamani S., Mortaz E. et al. Molecular Regulation of Bone Marrow Metastasis in Prostate and Breast Cancer // Bone Marrow Research. Volume 2014; Article ID 405920. doi.org/10.1155/2014/405920.

347. Rais Y., Reich A., Simsa-Maziel S. et al. The growth plates response to load is partially mediated by mechano-sensing via the chondrocytic primary cilium. Cell Mol Life Sci. 2015; 72 (3): 597-615. doi: 10.1007/s00018-014-1690-4.

348. Raposo G., Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013; 200 (4): 373-83.

349. Reddi A.H. Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials. Tissue Eng. 2000, 6: 351–359. 10.1089/107632700418074.

350. Redman S.N., Oldfield S.F., Archer C.W. Current strategies for articular cartilage repair. Eur Cell Mater. 2005; 9: 23–32.

351. Richardson S.M., Hoyland J.A., Mobasheri R. et al. Mesenchymal stem cells in regenerative medicine: opportunities and challenges for articular cartilage and intervertebral disc tissue engineering. J Cell Physiol. 2010; 222: 23–32.

352. Richardson S.M., Kalamegam G., Pushparaj P.N. et al. Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration. Methods. 2016; 99: 69-80.

353. Roberts S., McCall I.W., Darby A.J. et al. Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology. Arthritis Res Ther. 2003; 5: R60eR73.

354. Robey T.C. Valimaa T. Murphy H.S. et al. Use of internal bioabsorbale PLGA «finger-type» stents in a rabbit tracheal reconstruction Model. Arch Otolaryngol Head Neck Surg. 2000; 126: 985-991.

355. Robins J.C., Akeno N., Mukherjee A. et al. Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. Bone. 2005; 37: 313–322.

356. Rodda C.P., Kubota M., Heath J.A. et al. Evidence for a novel parathyroid hormone-related protein in fetal lamb parathyroid glands and sheep placenta: comparisons with a similar protein implicated in humoral hypercalcemia of malignancy // JEndocrinol. 1998; 117: 261–271.

357. Roodman G.D. Mechanisms of bone metastasis // N Engl J Med. 2004; 350: 1655–1664.

358. Rosier R.N., Zuscik M.J., Sampson E. et al. Protecting And Repairing Cartilage And Musculoskeletal Soft Tissues. Patent No.: US 8,513,193 B2 (45) Date of Patent: Aug. 20, 2013.

359. Ruiz-Heiland G., Horn A., Zerr P. et al. Blockade of the hedgehog pathway inhibits osteophyte formation in arthritis. Ann Rheum Dis 2012; 71: 400–407.

360. Ryser M.D., Qu Y., Komarova S.V. Osteoprotegerin in bone metastases: mathematical solution to the puzzle. PLoS Comput Biol. 2012; 8 (10): e1002703.

361. Sakaguchi Y., Sekiya I., Yagishita K. et al. Comparison of human stem cells derived from various mesenchymal tissues: Superiority of synovium as a cell source. Arthritis Rheum 2005; 52: 2521–2529.

362. Sakata J., Vacanti C.A., Schloo B. et al. Tracheal Composites tissue engineered from chondrocytes, tracheal epithelial cells, and synthetic degradable scaffoding. Transplant Proc.1994; 26: 3309–3310.

363. Sampat S.R., O Connell G.D., Fong J.V. et al. Growth factor priming of synoviumderived stem cells for cartilage tissue engineering. Tissue Eng Part A. 2011; 17: 2259–2265.

364. Sampson E.R., Hilton M.J., Tian Y. et al. Teriparatide as a chondroregenerative therapy for injury-induced osteoarthritis. Sci Transl Med. 2011; 3: 101–193.

365. Sandell L.J., Aigner T. Articular cartilage and changes in arthritis an introduction: Cell biology of osteoarthritis. Arthritis Res. 2001; 3: 107–13.

366. Sanders J.L., Chattopadhyay N., Kifor O. et al. Extracellular calcium-sensing receptor expression and its potential role in regulating parathyroid hormone-related peptide secretion in human breast cancer cell lines. Endocrinology. 2000; 141: 4357–4364.

367. Sato K., Fujii Y., Kasono K. et al. Parathyroid hormone-related protein and interleukin-1 alpha synergistically stimulate bone resorption in vitro and
increase the serum calcium concentration in mice in vivo // Endocrinology. 1989; 124 (5): 2172–2178.

368. Schek R.M., Taboas J.M., Segvich S.J. et al. Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Eng., 2004; 10: 1376–1385.

369. Schipani E., Lanske B., Hunzelman J. et al. Targeted expression of constitutively active receptors for parathyroid hormone and parathyroid hormone-related peptide delays endochondral bone formation and rescues mice that lack parathyroid hormone-related peptide. Proc Natl Acad Sci USA. 1997; 94, 13689–13694.

370. Schmid T.M., Linsenmayer T.F. Immunohistochemical localization hac secretion of pthrp and inhibition of msc hypertrophy of short chain cartilage collagen (type X) in avian tissues. J Cell Biol. 1985;
100: 598–605.

371. Schneider A., Kalikin L.M., Mattos A.C. et al. Bone turnover mediates preferential localization of prostate cancer in the skeleton. Endocrinology. 2005; 146: 1727–1736.

372. Scholtysek C., Kronke G., Schett G. Inflammation-associated changes in bone homeostasis. Inflamm. Allergy Drug Targets. 2012; 11: 188–195. doi: 10.2174/187152812800392706.

373. Seibel M.J. Clinical use of markers of bone turnover in metastatic bone disease. Nature Clinical Practice Oncology. 2005; 2, 504-517.

374. Sekita A., Matsugaki A., Nakano T. Disruption of collagen/apatite alignment impairs bone mechanical function in osteoblastic metastasis induced by prostate cancer. Bone. 2017; 97: 83–93.

375. Sekiya I., Vuoristo J.T., Larson B.L., Prockop D.J. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci USA. 2002; 99: 4397-4402.

376. Seo S., Na K. Mesenchymal Stem Cell-Based Tissue Engineering for Chondrogenesis. Journal of Biomedicine and Biotechnology. 2011; 2011: 806891. doi: 10.1155/2011/806891.

377. Sheehy E.J., Buckley C.T., Kelly D.J. Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells. Biochem Biophys Res Commun. 2012; 417: 305-310.

378. Shen G. The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod Craniofac Res. 2005; 8: 11–17.

379. Shimizu E., Selvamurugan N., Westendorf J.J., Olson E.N., Partridge N.C. HDAC4 represses matrix metalloproteinase-13 transcription in osteoblastic cells, and parathyroid hormone controls this repression. J Biol Chem. 2010; 285: 9616-9626.

380. Shintani N., Siebenrock K.A., Hunziker E.B. TGF-ss1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants and arrests downstream differentiation at an early stage of hypertrophy. PLoS One. 2013; 8: e53086.

381. Simmonds C.S., Kovacs C.S. Role of parathyroid hormone (PTH) and PTH-related protein (PTHrP) in regulating mineral homeostasis during fetal development // Crit Rev Eukaryot Gene Expr. 2010; 20: 235–273.

382. Sinclair K., Yerkovich S., Chen T., McQualter J., Hopkins P., Wells C., et al. Mesenchymal stromal cells are readily recoverable from lung tissue, but not the alveolar space, in healthy humans. Stem Cells. 2016; 34 (10): 2548–2558.

383. Soki F.N., Park S.I., McCauley L.K.The multifaceted actions of PTHrP in skeletal metastasis // Future Oncol. 2012; 8 (7): 803–817.

384. Song J.J., Ott H.C. Organ engineering based on decellularized matrix scaffolds. Trends Mol Med. 2011; 17: 424–432.

385. Song L., Baksh D., Tuan R.S., Mesenchymal stem cellbased cartilage tissue engineering: cells, scaffold and biology. Cytotherapy. 2004; 6 (6): 596-601.

386. Sowers M.F., Hollis B.W., Shapiro B. et al., Zhang Elevated parathyroid hormone-related peptide associated with lactation and bone density loss // JAMA.1996; 276: 549–554.

387. Stanton L.A., Sabari S., Sampaio A.V., Underhill T.M., Beier F. p38 MAP kinase signalling is required for hypertrophic chondrocyte differentiation. Biochem J 2004; 378: 53-62.

388. Steadman J.R., Rodkey W.G., Rodrigo J.J. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 2001; 391 (391 Suppl): S362–369.

389. Stevens D.A., Hasserjian R.P., Robson H. et al. Thyroid Hormones Regulate Hypertrophic Chondrocyte Differentiation and Expression of Parathyroid Hormone-Related Peptide and Its Receptor During Endochondral Bone Formation. J Bone Miner Res. 2000; 15: 2431–2442.

390. Stevens D.A., Williams G.R. Hormone regulation of chondrocyte differentiation and endochondral bone formation. Mol Cell Endocrinol. 1999; 151: 195–204.

391. Stewart A.F., Cain R.L., Burr D.B. et al. Six-month daily administration of parathyroid hormone and parathyroid hormone-related protein peptides to adult ovariectomized rats markedly enhances bone mass and biomechanical properties: a comparison of human parathyroid hormone 1–34, parathyroid hormone-related protein 1–36, and SDZ-parathyroid hormone 893 // J Bone Miner Res. 2000; 15: 1517–1525.

392. St-Jacques B. Hammerschmidt M. McMahon A.P. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999; 13 (16): 2072-2086.

393. Strewler G.J. The physiology of parathyroid hormone-related protein // New Eng J Med. 2000; 342: 177–185.

394. Strobel S., Loparic M., Wendt D. et al. Anabolic and catabolic responses of human articular chondrocytes to varying oxygen percentages // Arthritis Res Ther. 2010; 12: R34.

395. Studer D., Millan C., zurk E. et al. Molecular and biophysical mechanisms regulating hypertrophic differentiation in chondrocytes and mesenchymal stem cells. Eur Cell Mater. 2012; 24: 118-135.

396. Sun F., Pan S., Shi H.C. et al. Structural integrity, immunogenicity and biomechanical evaluation of rabbit decelluarized tracheal matrix. J Biomed Mater Res A. 2015; 103: 1509–1519.

397. Sun K., Liu F., Wang J. et al. The effect of mechanical stretch stress on the differentiation and apoptosis of human growth plate chondrocytes. In Vitro Cell Dev Biol Anim. 2017 Feb; 53 (2): 141–148. doi: 10.1007/s11626-016-0090-5.

398. Szentpetery A., Horvath A., Gulyas K., Petho Z., Bhattoa H.P., Szanto S., Szucs G., FitzGerald O., Schett G., Szekanecz Z. Effects of targeted therapies on the bone in arthritides. Autoimmun. Rev. 2017; 36: 313–320. doi: 10.1016/j.autrev.2017.01.014.

399. Taipale J., Chen J.K., Cooper M.K. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature. 2000; 406: 1005-1009.

400. Takahashi K., Tanabe K., Ohnuki M. et al. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell. 2007; 131: 861–872.

401. Takeda S., Bonnamy J.P., Owen M.J. et al. Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1- deficient mice. Gene Dev. 2001; 15: 467-481.

402. Tan Q., Steiner R., Hoerstrup S.P., Weder W. Tissue-engineered trachea: History, problems and the future. European journal of cardio-thoracic
surgery: official journal of the European Association for Cardio-thoracic Surgery. 2006; 30 (5): 782–786.

403. Tanaka N., Ohno S., Honda K. et al. Cyclic Mechanical Strain Regulates the PTHrP Expression in Cultured Chondrocytes via Activation of the Ca2+ Channel. J Dent Res. 2005; 84 (1): 64-68.

404. Tang G.H., Rabie A.B., Hagg U. Indian hedgehog: a mechanotransduction mediator in condylar cartilage. J Dent Res. 2004; 83: 434–38.

405. Tani G., Usui N., Kamiyama M. et al. In vitro construction of scaffold-free cylindrical cartilage using cell sheet-based tissue engineering. Pediatr Surg Int. 2010; 26 (2): 179– 185.

406. Tatekawa Y., Kawazoe N., Chen G. et al. Tracheal defect repair using a PLGA-collagen hybrid scaffold reinforced by a copolymer stent with bFGF-impregnated gelatin hydrogel. Pediatr Surg Int. 2010; 26 (6): 575–580.

407. Tay A.G., Farhadi J., Suetterlin R. et al. Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes. Tissue Eng. 2004; 10 (5–6): 762–70.

408. Tchetina E.V., Squires G., Poole A.R. Increased type II collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions. J Rheumatol. 2005; 32: 876–886.

409. Terkeltaub R., Lotz M., Johnson K. et al. Parathyroid hormone-related proteins is abundant in osteoarthritic cartilage, and the parathyroid hormone-related protein 1–173 isoform is selectively induced by transforming growth factor beta in articular chondrocytes and suppresses generation of extracellular inorganic pyrophosphate. Arthritis Rheum. 1998; 41: 2152-2164.

410. Tew S.R., Clegg P.D. Analysis of post transcriptional regulation of SOX9 mRNA during in vitro chondrogenesis. Tissue Eng Part A. 2011; 17: 1801–1807.

411. Thiede M.A., Daifotis A.G., Weir E.C. et al. Intrauterine occupancy controls expression of the parathyroid hormone-related peptide gene in preterm rat myometrium. Proc Natl Acad Sci USA. 1990; 87: 6969–73.

412. Tins B.J., McCall I.W., Takahashi T. et al. Autologous chondrocyte implantation in knee joint: MR imaging and histologic features at 1-year follow-up. Radiology. 2005; 234: 501–8.

413. Toh W.S. Recent Progress in Stem Cell Chondrogenesis. Progress in Stem Cell. 2014; 1 (01), 07–17.

414. Toh W.S., Foldager C.B., Olsen B.R., Spector M. Basement membrane molecule expression attendant to chondrogenesis by nucleus pulposus cells and mesenchymal stem cells. Journal of Orthopaedic Research. 2013; 31: 1136-1143.

415. Toh W.S., Foldager C.B., Pei M., Hui J.H. Advances in mesenchymal stem cellbased strategies for cartilage repair and regeneration. Stem Cell Rev. 2014; 10: 686-696.

416. Toh W.S., Spector M., Lee E.H., Cao T. Biomaterial-Mediated Delivery of Microenvironmental Cues for Repair and Regeneration of Articular Cartilage. Molecular Pharmaceutics. 2011b; 8: 994-1001.

417. Toribio R.E., Brown H.A., Novince C.M. et al. The midregion, nuclear localization sequence, and C terminus of PTHrP regulate skeletal development, hematopoiesis, and survival in mice // FASEB J. 2010; 24: 1947–1957.

418. Tottey S., Johnson S.A., Crapo P.M. et al. The effect of source animal age upon extracellular matrix scaffold properties. Biomaterials. 2011; 32: 128-136.

419. Tsukazaki T., Ohtsuru A., Enomoto H. et al. Expression of parathyroid hormonerelated protein in rat articular cartilage. Calcif Tissue Int. 1995; 57: 196-200.

420. Underhill T.M., Sampaio A.V., Weston A.D. Retinoid signalling and skeletal development. Novartis Found Symp. 2001; 232: 171–185. 10.1002/0470846658.ch12.

421. Uy H.L., Mundy G.R., Boyce B.F. et al. Tumor necrosis factor enhances parathyroid hormone-related protein-induced hypercalcemia and bone resorption without inhibiting bone formation in vivo // Cancer Res. 1997; 57 (15): 3194–3199.

422. Vacanti C.A., Paige K.T., Kim W.S. et al. Experimental tracheal replacement using tissue-engineered cartilage. J Pediatr Surg.1994;
29 (2): 201–205.

423. Vadala G., Sowa G., Hubert M. et al. Mesenchymal stem cells injection in degenerated intervertebral disc: cell leakage may induce osteophyte formation. J Tissue Eng Regen Med. 2012; 6 (5): 348-55. doi: 10.1002/term.433.

424. Valin A., Garcia-Ocana A., De Miguel F. et al. Antiproliferative effect of the Cterminal fragments of parathyroid hormone-related protein, PTHrP-(107–111) and (107– 139), on osteoblastic osteosarcoma cells. J. Cell. Physiol. 1997; 170: 209–215.

425. Van den Akker G., van Beuningen H., Davidson E.B., van der Kraan P. CRISPR/CAS9 mediated genome engineering of human mesenchymal stem cells. Osteoarthr Cartil. 2016; 24: S231.

426. Van Donkelaar C.C., Huiskes R. The PTHrP-Ihh feedback loop in the embryonic growth plate allows PTHrP to control hypertrophy and Ihh to regulate proliferation. Biomech Model Mechanobiol. 2006; 6: 55-62.

427. VanHouten J., Dann P., McGeoch G. et al. The calcium-sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport // J Clin Invest. 2004; 113: 598–608.

428. VanHouten J.N., Dann P., Stewart A.F. et al. Mammary-specific deletion of parathyroid hormone-related protein preserves bone mass during lactation // J Clin Invest. 2003; 112: 1429–1436.

429. VanHouten J.N., Wysolmerski J.J. Low estrogen and high parathyroid hormonerelated peptide levels contribute to accelerated bone resorption and bone loss in lactating mice // Endocrinology. 2003; 144: 5521–5529.

430. Venkatesan J.K., Ekici M., Madry H. et al. SOX9 gene transfer via safe, stable, replication-defective recombinant adenoassociated virus vectors as a novel, powerful tool to enhance the chondrogenic potential of human mesenchymal stem cells. Stem Cell Res Ther. 2012; 3: 22. doi.org/10.1186/scrt113.

431. Verzi M.P., Agarwal P., Brown C. et al. The transcription factor MEF2C is required for craniofacial development. Developmental cell. 2007; 12 (4): 645-652. doi: 10.1016/j.devcel.2007.03.007.

432. Vilardaga J.P., Romero G., Friedman P.A., Gardella T.J. Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm // Cell Mol Life Sci. 2011; 68: 1–13.

433. Vinardell T., Sheehy E.J., Buckley C.T., Kelly D.J. A Comparison of the Functionality and In Vivo Phenotypic Stability of Cartilaginous Tissues Engineered from Different Stem Cell Sources. Tissue Engineering Part A. 2012; 18 (11–12): 1161–1170. doi: 10.1089/ten.tea.2011.0544.

434. Vinatier C., Guicheux J. Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments. Ann Phys Rehabil Med. 2016; 59: 139–144.

435. Vortkamp A., Lee K., Lanske B. et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 1996; 273: 613–622

436. Wang D., Taboas J.M., Tuan R.S. PTHrP Overexpression Partially Inhibits a Mechanical Strain-Induced Arthritic Phenotype in Chondrocytes. Osteoarthritis Cartilage. 2011; 19 (2): 213–221. doi: 10.1016/j.joca.2010.11.003.

437. Wang H.S., Hung S.C., Peng S.T. et al. Mesenchymal stem cells in the Whartons jelly of the human umbilical cord. Stem Cells. 2004; 22 (7): 1330–1337.

438. Wang M., Nasiri A.R., Broadus A.E., Tommasini S.M. Periosteal PTHrP Regulates Cortical Bone Remodeling during Fracture Healing. Bone. 2015; 81: 104-111.

439. Wang X., Manner P.A., Horner A. et al. Regulation of MMP-13 expression by RUNX2 and FGF2 in osteoarthritic cartilage. Osteoarthritis Cartilage. 2004; 12: 963–973.

440. Wang Y., Lei R., Zhuang X. et al. DLC1-dependent parathyroid hormone-like hormone inhibition suppresses breast cancer bone metastasis // J Clin Invest. 2014; 124 (4): 1646-59.

441. Wang Y., Yan Z., Fan W., Guo C. PTHrP/IHH Involvement in TGF βand Bone Morphogenic Protein Cross-Talk in the Growth Plate and In Vitro Cartilage Development to Prevent Hypertrophy of Mesenchymal Stromal/Stem Cells. Journal of Biomaterials and Tissue Engineering. 2015; 5 (5): 391–395 (5). doi.org/10.1166/jbt.2015.1325.

442. Wasiak J., Villanueva E. Autologous cartilage implantation for full thickness articular cartilage defects of the knee. Cochrane Database Syst Rev. 2006.

443. Weidenbecher M., Tucker H.M., Awadallah A., Dennis J.E. Fabrication of a neotrachea using engineered cartilage. The Laryngoscope. 2008; 118 (4): 593–598.

444. Weilbaecher K.N., Guise T.A., McCauley L.K. Cancer to bone: a fatal attraction // Nat. Rev. Cancer. 2011; 11 (6): 411–425.

445. Weir E.C., Philbrick W.M., Amling M. et al. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc. Natl. Acad. Sci. USA. 1996; 93: 10240–10345.

446. Weiss S., Hennig T., Bock R. et al. Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells // J. Cell Physiol. 2010; 223: 84-93.

447. Weisser J., Riemer S., Schmidl M. et al. Four distinct chondrocyte populations in the fetal bovine growth plate: highest expression levels of PTH/PTHrP receptor, Indian hedgehog, and MMP-13 in hypertrophic chondrocytes and their suppression by PTH (1– 34) and PTHrP (1–40). Exp Cell Res. 2002; 279, 1–13.

448. Weissman I.L., Translating stem and progenitor cell biology to the clinic: barriers and opportunities Science. 2000; 287 (5457): 1442–1446.

449. Whitfield J.F. Parathyroid hormone-related protein (PTHrP): an ancient string of cytokines with many known and still unknown functions. In Novel Aspects of PTHrP Physiopathology; Luparello, C., Ed; Nova Science Publishers: New York, NY, USA. 2007; pp. 1–25.

450. Williams R., Khan I.M., Richardson K. et al. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS One. 2010; 5 (10): e13246.

451. Worthley D.L., Churchill M; Compton J.T. et al. Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell. 2015; 160: 269–284.

452. Wright, L.E., Guise, T.A. The Role of PTHrP in Skeletal Metastases and Hypercalcemia of Malignancy // Clinic Rev Bone Miner Metab. 2014; 12: 119.

453. Wu L., Leijten J.C.H., Georgi N. et al. Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng. Part A 2011; 17: 1425–1436.

454. Wu L., Prins H-J., Helder M.N. et al. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources. Tissue Eng Part A 2012; 18: 1542–1551.

455. Wu Q., Zhang Y., Chen Q. Indian hedgehog is an essential component of mechanotransduction complex to stimulate chondrocyte proliferation. J Biol Chem. 2001; 276: 35290–35296.

456. Wu T.L., Vasavada R.C., Yang K. et al. Structural and physiologic characterization of the midregion secretory species of parathyroid hormone-related protein // J Biol Chem. 1996; 271: 24371–24378.

457. Wu W., Mwale F., Tchetina E., Kojima T., Yasuda T., Poole A.R: Cartilage matrix resorption in skeletogenesis. Novartis Found Symp. 2001; 232: 158-166. 10.1002/0470846658.ch11.

458. Wysolmerski J.J. Parathyroid hormone-related protein: An update // Clin. Endocrinol. Metab. 2012; 97 (9): 2947–2956.

459. Xian C.J., Foster B.K. Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy. Curr Stem Cell Res Ther. 2006, 1: 213-229.

460. Xiong J., Onal M., Jilka R.L. et al. Matrix-embedded cells control osteoclast formation // Nat. Med. 2011; 17 (10): 1235–1241.

461. Xu J., Rong H., Ji H. et al. Effects of different dosages of parathyroid hormone-related protein 1–34 on the bone metabolism of the ovariectomized rat model of osteoporosis // Calcif Tissue Int. 2013; 93: 276–287. https://doi.org/10.1007/s00223-013-9755-1.

462. Xu T., Yang K., You H. et al. Regulation of PTHrP expression by cyclic mechanical strain in postnatal growth plate chondrocytes. Bone. 2013; 56: 304–311.

463. Yamamoto I, Potts J.T.J., Segre G.V. 1983 Circulating bovine lymphocytes contain receptors for parathyroid hormone J Clin Invest 71: 404– 407.

464. Yan Y.L., Bhattacharya P., He X. et al. Duplicated zebrafi sh co-orthologs of parathyroid hormone-related peptide (PTHrP, Pthlh) play diff erent roles in craniofacial skeletogenesis. J Endocrinol. 2012 Sep; 214 (3): 421–35. doi: 10.1530/JOE-12-0110.

465. Yan Z., Jin S., Wei Z. et al. Discoidin domain receptor 2 facilitates prostate cancer bone metastasis via regulating parathyroid hormone-related protein // Biochim Biophys Acta. 2014; 1842 (9): 1350–63.

466. Yang H.N., Park J.S., Na K. et al. The use of green fluorescence gene (GFP)- modified rabbit mesenchymal stem cells (rMSCs) co-cultured with chondrocytes in hydrogel constructs to reveal the chondrogenesis of MSCs. Biomaterials. 2009; 30 (31) 6374– 6385.

467. Yang Y.H., Lee A.J., Barabino G.A. Coculture-driven mesenchymal stem cell-differentiated articular chondrocyte-like cells support neocartilage development. Stem cells translational medicine. 2012; 1 (11): 843–854. doi: 10.5966/sctm.2012-0083.

468. Yazawa M., Sadaghiani A.M., Hsueh B., Dolmetsch R.E. Induction of proteinprotein interactions in live cells using light. Nat Biotechnol. 2009; 27: 941-945.

469. Yoo J.U., Barthel T.S., Nishimura K. et al. The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. The Journal of bone and joint surgery American volume. 1998; 80 (12): 1745–1757.

470. Yoshida C.A., Yamamoto H., Fujita T. et al. Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev. 2004; 18: 952-963.

471. Yoshida T., Horiuchi T., Sakamoto H. et al. Production of parathyroid hormone-related peptide by synovial fibroblasts in human osteoarthritis. FEBS Lett. 1998; 433: 331–334.

472. Yoshida T., Sakamoto H., Horiuchi T. et al. Involvement of prostaglandin E(2) in interleukin-1alpha-induced parathyroid hormone-related peptide production in synovial fibroblasts of patients with rheumatoid arthritis. J Clin Endocrinol Metab. 2001; 86: 3272–3278.

473. Yoshimura H., Muneta T., Nimura A. et al. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res. 2007; 327: 449–462.

474. Zafeirakis A. Collagenous and non-collagenous biochemical markers of bone metastases from prostate cancer. HIPPOKRATIA. 2010; 14 (3): 164-169.

475. Zang M., Zhang Q., Chang E.I. et al. Decellularized tracheal matrix scaffold for tracheal tissue engineering: in vivo host response. Plast Reconstr Surg. 2013; 132 (4): 549- 559. doi: 10.1097/PRS.0b013e3182a013fc.

476. Zeng L., Kempf H., Murtaugh L.C. et al. Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes Dev. 2002; 16: 1990-2005.

477. Zhang L., He A., Yin Z. et al. Regeneration of humanear-shaped cartilage by coculturing human microtia chondrocytes with BMSCs. Biomaterials. 2014; 35 (18): 4878–87.

478. Zhang M., Xie R., Hou W. et al. PTHrP prevents chondrocyte premature hypertrophy by inducing cyclin-D1-dependent Runx2 and Runx3 phosphorylation, ubiquitylation and proteasomal degradation. J. Cell Sci. 2009, 122, 1382–1389.

479. Zhang W., Chen J., Tao J. Hu C., Ji J., Ouyang H.W. Optimal Intra-articular Injection of Parathyroid Hormone-Related Protein Effectively Promotes Osteochondral Defects Repair. In: Goh J. (eds) The 15th International Conference on Biomedical Engineering. IFMBE Proceedings, 2014; 43: 40-43. doi.org/10.1007/978-3–319-02913-9_11.

480. Zhang W., Chen J., Zhang S., Ouyang H.W. Inhibitory function of parathyroid hormone-related protein on chondrocyte hypertrophy: the implication for articular cartilage repair. Arthritis Research & Therapy. 2012; 14 (4): 221. doi: 10.1186/ar4025.

481. Zhang W., Chen, J., Tao, J. et al. The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold. Biomaterials. 2013, 34 (25): 6046-57. doi: 10.1016 / j.biomaterials.2013.04.055.

482. Zhang W., Ouyang H., Dass C.R., Xu J. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Research 2016; 4, Article number: 15040. doi: 10.1038/boneres.2015.40 15040.

483. Zhang Y., Brown M.A., Peach C. et al. Investigation of the role of ENPPI and TNAP genes in chondrocalcinosis. Rheumatology. 2007; 46: 586–589.

484. Zhang, M., Xie, R., Hou, W. et al. PTHrP prevents chondrocyte premature hypertrophy by inducing cyclin-D1-dependent Runx2 and Runx3 phosphorylation, ubiquitylation and proteasomal degradation. J. Cell Sci. 2009, 122, 1382–1389.

485. Zhao G., Yin S., Liu G. et al. In vitro engineering of fibrocartilage using CDMP1 induced dermal fibroblasts and polyglycolide. Biomaterials. 2009; 30 (19): 3241–50.

486. Zhen X., Wei L., Wu Q. et al. Mitogen-activated protein kinase p38 mediates regulation of chondrocyte differentiation by parathyroid hormone. J Biol Chem. 2001; 276: 4879-4885.

487. Zhong J., Guo B., Xie J. et al. Crosstalk between adipose-derived stem cells and chondrocytes: When growth factors matter. Bone Res. 2016; 4: 15036.

488. Zhong L., Huang X., Karperien M., Post J.N. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes. International Journal of Molecular Sciences. 2015; 16 (8): 19225-19247. doi: 10.3390/ijms160819225.

489. Zimmerman L.B., De Jesus-Escobar J.M., Harland R.M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell. 1996; 86: 599-606.

490. Zuscik M.J., O Keefe R.J., Gunter T.E. et al: Parathyroid hormone-related peptide regulation of chick tibial growth plate chondrocyte maturation requires protein kinase A // J Orthop Res. 2002; 20 (5): 1079–1090.


Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1,674