Научная электронная библиотека
Монографии, изданные в издательстве Российской Академии Естествознания

ПАРАТГОРМОН-РОДСТВЕННЫЙ ПРОТЕИН. 2-е издание переработанное и дополненное

Курзанов А. Н., Ледванов М. Ю., Быков И. М., Медведев В. Л., Стрыгина Е. А., Бизенкова М. Н., Заболотских Н. В., Ковалев Д. В., Стукова Н. Ю.,

Литература к главе 12

1. Alonso V., de Gortazar A.R., Ardura J.A., Andrade-Zapata I., Alvarez-Arroyo M.V., Esbrit P. Parathyroid hormone-related protein (107–139) increases human osteoblastic cell survival by activation of vascular endothelial growth factor receptor-2. J. Cell. Physiol. 2008; 217: 717-727. DOI: 10.1002/jcp.21547.

2. Anastasilakis A.D., Goulis D.G., Polyzos S.A. et al. Head-to-head comparison of risedronate vs. teriparatide on bone turnover markers in women with postmenopausal osteoporosis: a randomised trial. Int J Clin Pract. 2008; 62 (6): 919–24. doi: 10.1111/j.1742–1241.2008.01768.x.

3. Ardura J.A., Portal-Nunez S., Lozano D., Gutierrez-Rojas I., Sanchez-Salcedo S., Lopez-Herradon A., Mulero F., Villanueva-Penacarrillo M.L., Vallet-Regi M., Esbrit P. Local delivery of parathyroid hormone-related protein-derived peptides coated onto a hydroxyapatite-based implant enhances bone regeneration in old and diabetic rats. J. Biomed. Mater. Res. A. 2016; 104: 2060–2070. DOI: 10.1002/jbm.a.35742.

4. Augat P., Iida H., Jiang Y. et al. Distal radius fractures: mechanisms of injury and strength prediction by bone mineral assessment. J. Orthop. Res. 1998; 16: 629–635.

5. Augustine M., Horwitz M.J. Parathyroid Hormone and Parathyroid Hormone-related Protein Analogs as Therapies for Osteoporosis. Current Osteoporosis Reports. 2013. V. 11 (4). Р. 400–406. DOI: 10.1007/s11914-013-0171–2.

6. Austin M., Yang Y., Vittinghoff E., Adami S., Boonen S., Bauer D.C., Bianchi G., Bolognese M.A., Christiansen C., Eastell R., Grauer A., Hawkins F., Kendler D.L., Oliveri B., McClung M.R., Reid I.R., Siris E.S., Zanchetta J., Zerbini C.A., Libanati C., Cummings S.R. Relationship between bone mineral density changes with denosumab treatment and risk reduction for vertebral and nonvertebral fractures. J. Bone Miner Res. 2012. V. 27. Р. 687-693. DOI: 10.1002/jbmr.1472.

7. Bahar H., Gallacher K., Downall J., Nelson C.A., Shomali M., Hattersley G. Six weeks of daily abaloparatide treatment increased vertebral and femoral bone mineral density, microarchitecture and strength in ovariectomized osteopenic rats. Calcif Tissue Int. 2016. V. 99 (5). Р. 489–499.

8. Bahney C., Zondervan R., Allison P., Theologis A., Ashley J., Ahn J., Miclau T., Marcucio R., Hankenson K. Cellular biology of fracture healing. Journal of Orthopaedic Research. 2019. V. 37 (1). Р. 35–50. DOI: 10.1002/jor.24170.

9. Bernhardsson M., Aspenberg P. Abaloparatide versus teriparatide: a head to head comparison of effects on fracture healing in mouse models. Acta Orthop. 2018. V. 89 (6). Р. 674-677. DOI: 10.1080/17453674.2018.1523771.

10. Besschetnova T., Brooks D.J., Hu D., Nagano K., Nustad J., Ominsky M., Mitlak B., Hattersley G., Bouxsein M.L., Baron R., Lanske B. Abaloparatide improves cortical geometry and trabecular microarchitecture and increases vertebral and femoral neck strength in a rat model of male osteoporosis. Bone. 2019; 124: 148-157.

11. Bhandari M., Schemitsch E. Stimulation of Fracture Healing: Osteobiologics, Bone Stimulators, and Beyond. Journal of Orthopaedic Trauma. 2010. V. 24. S 1. Victoria G., Petrisor B., Drew B., Dick D: Bone stimulation for fracture healing: What’s all the fuss?. Indian journal of orthopaedics. 2009. V. 43. Р. 117–120. DOI: 10.4103/0019-5413.50844.

12. Bhattacharyya S., Pal S., Chattopadhyay N. Abaloparatide, the second generation osteoanabolic drug: Molecular mechanisms underlying its advantages over the first-in-class teriparatide. Biochem Pharmacol. 2019 Aug; 166:
185-191. doi: 10.1016/j.bcp.2019.05.024.

13. Bouxsein M.L., Coan B.S., Lee S.C. Prediction of the strength of the elderly proximal femur by bone mineral density and quantitative ultrasound measurements of the heel and tibia. Bone. 1999. V. 25. Р. 49–54.

14. Calori G.M., Mazza E., Colombo M., Ripamonti C., Tagliabue L. Treatment of long bone non-unions with polytherapy: Indications and clinical results. Injury. 2011. V. 42. Р. 587–590.

15. Capriani C., Irani D., Bilezikian J.P. Safety of osteoanabolic therapy: A decade of experience. J Bone Miner Res. 2012; 27 (12): 2419–28. doi: 10.1002/jbmr.1800. Epub 2012/11/21.

16. Cauley J.A., Hochberg M.C., Lui L., Palermo L., Ensrud K.E., Hillier T.A., Nevitt M.C., Cummings SR. Long-term risk of incident vertebral fractures. JAMA. 2007. V. 298. Р. 2761–2767. DOI: 10.1001/jama.298.23.2761.

17. Chandler H., Brooks D., Hattersley G., Bouxsein M.L., Lanske B. Abaloparatide increases bone mineral density and bone strength in ovariectomized rabbits with glucocorticoid-induced osteopenia Osteoporos Int. 2019. Р. 1–10. DOI: 10.1007/s00198-019-04999-4.

18. Chandler H., Lanske B., Varela A., Guillot M., Boyer M., Brown J., Pierce A., Ominsky M., Mitlak B., Baron R., Kostenuik P., Hattersley G. Abaloparatide, a novel osteoanabolic PTHrP analog, increases cortical and trabecular bone mass and architecture in orchiectomized rats by increasing bone formation without increasing bone resorption. Bone. 2019. V. 120. Р. 148–155.

19. Chew C.K., Clarke B.L. Abaloparatide: Recombinant human PTHrP (1–34) anabolic therapy for osteoporosis. Maturitas. 2017. V. 97. Р. 53-60.

20. Childs S.G. Stimulators of bone healing. Biologic and biomechanical Orthop Nurs. 2003. V. 22 (6). Р. 421-428.

21. Coletta D.J., Lozano D., Rocha-Oliveira A.A., Mortarino P., Bumaguin G.E., Vitelli E., Vena R., Missana L., Jammal M.V., Portal-Nunez S., Pereira M., Esbrit P., Feldman S. Characterization of hybrid bioactive glass–polyvinyl alcohol scaffolds containing a PTHrP-derived pentapeptide as implants for tissue engineering applications. Open Biomed Eng. J. 2014. V. 8. Р. 20–27.

22. Compston J.E. Skeletal actions of intermittent parathyroid hormone: effects on bone remodelling and structure // Bone. 2007; 40: 1447–1452.

23. Cornish J., Callon K.E., Lin C., Xiao C., Moseley J.M., Reid I.R. Stimulation of osteoblast proliferation by C-terminal fragments of parathyroid hormone-related protein. J. Bone Mine. Res. 1999. V. 14. Р. 915–922. DOI: 10.1359/jbmr.1999.14.6.915.

24. Cornish J., Callon K.E., Nicholson G.C., Reid I.R. Parathyroid hormone-related protein-(107–139) inhibits bone resorption in vivo. Endocrinology. 1997. V. 138. Р. 1299–1304. DOI: 10.1210/endo.138.3.4990.

25. Cosman F. Abaloparatide: a new anabolic therapy on the horizon. BoneKEy Reports. 2015. V. 4. Р. 661. DOI: 10.1038/bonekey.2015.28.

26. Cosman F., Cauley J.A., Eastell R., Boonen S., Palermo L., Reid I.R., Cummings S.R., Black D.M. Reassessment of fracture risk in women after 3 years of treatment with zoledronic acid: when is it reasonable to discontinue treatment? J. Clin. Endocrinol Metab. 2014. V. 99 (12). Р. 4546–4554.

27. Cosman F., Miller P.D., Williams G.C., Hattersley G., Hu M., Valter I., Fitzpatrick L.A., Riis B.J., Christiansen C., Bilezikian J.P., Black D. Eighteen Months of Treatment With Subcutaneous Abaloparatide Followed by 6 Months of Treatment With Alendronate in Postmenopausal Women With Osteoporosis: Results of the ACTIVExtend Trial. Mayo Clin. Proc. 2017. V. 92 (2). Р. 200-210. DOI: 10.1016/j.mayocp.2016.10.009.

28. Culler M., Dong J., Shen Y. et al. BIM-44058, a novel analog of PTHrP with enhanced bone building activity, but decreased calcium-mobilization potential. J Bone Miner Res. 2001; 16 (Suppl 1): M460.

29. Cummings S.R., Cosman F., Eastell R., Reid I.R., Mehta M., Lewiecki E.M. Goal-directed treatment of osteoporosis. J. Bone Miner Res. 2013. V. 28. Р. 433–438.

30. Datta N.S., Abou-Samra A.B. PTH and PTHrP signalling in osteoblasts. Cell. Signal. 2009. V. 21. Р. 1245–1254. DOI: 10.1016/j.cellsig.2009.02.012.

31. de Castro L.F., Lozano D., Dapia S., Portal-Nunez S., Caeiro J.R., Gomez-Barrena E., Esbrit P. Role of the N- and C-terminal fragments of parathyroid-hormone-related protein as putative therapies to improve bone regeneration under high glucocorticoid treatment. Tissue. Eng. Part. A. 2010. V. 16 (4). Р. 1157–1168.

32. de Castro L.F., Lozano D., Portal-Nunez S., Maycas M., De la Fuente M., Caeiro J.R., Esbrit P. Comparison of the skeletal effects induced by daily administration of PTHrP (1–36) and PTHrP (107–139) to ovariectomized mice. J. Cell. Physiol. 2012. V. 227 (4). Р. 1752-60.

33. De Gortazar A.R., Alonso V., Alvarez-Arroyo M.V., Esbrit P. Transient Exposure to PTHrP (107–139) Exerts Anabolic Effects through Vascular Endothelial Growth Factor Receptor 2 in Human Osteoblastic Cells in vitro. Calcif. Tissue Int. 2006. V. 79. Р. 360–369. DOI: 10.1007/s00223-006-0099-y.

34. Dean, T., Vilardaga, J.P., Potts, J.T., Jr., Gardella, T.J. Altered selectivity of parathyroid hormone (PTH) and PTH-related protein (PTHrP) for
distinct conformations of the PTH/PTHrP receptor. Molecular endocrinology Baltimore. 2008; 22: 156-166.

35. Dede A.D., Makras P., Anastasilakis A.D. Investigational anabolic agents for the treatment of osteoporosis: an update on recent developments. Expert Opin Investig Drugs. 2017. V. 26 (10). Р. 1137–1144. DOI: 10.1080/13543784.2017.1371136.

36. Dempster D.W., Zhou H., Recker R.R., Brown J.P., Bolognese M.A., Recknor C.P., Kendler D.L., Lewiecki E.M., Hanley D.A., Rao D.S., Miller P.D., Woodson G.C. 3rd, Lindsay R., Binkley N., Wan X., Ruff V.A., Janos B., Taylor K.A. Skeletal histomorphometry in subjects on teriparatide or zoledronic acid therapy (SHOTZ) study: a randomized controlled trial. J. Clin. Endocrinol Metab. 2012. V. 97 (8). Р. 2799–2808. DOI: 10.1210/jc.2012–1262.

37. Dempster, D.W., Cosman, F., Kurland, E.S. et al. Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J Bone Miner Res. 2001; 16: 1846–1853.

38. Dimitriou R., Tsiridis E., Giannoudis P.V. Current concepts of molecular aspects of bone healing. Injury. 2005. V. 36. Р. 1392–1404.

39. Doyle N., Varela A., Haile S., Guldberg R., Kostenuik P.J., Ominsky M.S., Smith S.Y., Hattersley G. Abaloparatide, a novel PTH receptor agonist, increased bone mass and strength in ovariectomized cynomolgus monkeys by increasing bone formation without increasing bone resorption. Osteoporos Int. 2018. V. 29 (3). Р. 685-697. DOI: 10.1007/s00198-017-4323-6.

40. Doyle N., Varela A., Smith S. et al. Long term effect of BA058, a novel human PTHrP analog, restores bone mass in the aged osteopenic ovariectomized cynomolgus monkey. J. Bone Miner Res. 2013. V. 28 (Suppl 1). Р. SA0409.

41. Duvall C.L., Taylor W.R., Weiss D., Wojtowicz A.M., Guldberg R.E. Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice. J. Bone Miner. Res. 2007. V. 22. Р. 286–297.

42. Einhorn T.A., Gerstenfeld L.C. Fracture healing: mechanisms and interventions. Nat. Rev. Rheumatol. 2015. V. 11. Р. 45–54.

43. Einhorn T.A., Laurencin C.T., Lyons K. An aaos-nih symposium. Fracture repair: Challenges, opportunities, and directions for future research. J. Bone Jt. Surg. Am. 2008. V. 90. Р. 438–442.

44. Esbrit P., Alcaraz V.J. Current perspectives on parathyroid hormone (PTH) and PTH-related protein (PTHrP) as bone anabolic therapies // Biochemical Pharmacology. 2013; 85 (10): 1417–1423. DOI: 10.1016/j.bcp.2013.03.002.

45. Esbrit P., Herrera S., Portal-Nunez S., Nogues X., Diez-Perez A. Parathyroid Hormone-Related Protein Analogs as Osteoporosis Therapies. Calcified Tissue International. 2016. V. 98 (4). Р. 359–369.

46. Fenton A.J., Kemp B.E., Hammonds R.G., Mitchelhill K., Moseley J.M., Martin T.J., Nicholson G.C. A potent inhibitor of osteoclastic bone resorption within a highly conserved pentapeptide region of parathyroid hormone-related protein; PTHrP. Endocrinology. 1991. V. 129. Р. 3424–3426. DOI: 10.1210/endo-129-6-3424.

47. Frolik C.A., Cain R.L., Sato M. et al. Comparison of Recombinant Human PTH(1–34) (LY333334) with a C-Terminally Substituted Analog of Human PTH-Related Protein (1–34) (RS-66271): In Vitro Activity and In Vivo Pharmacological Effects in Rats // J Bone Miner Res.1999; 14: 163–172.

48. Gallagher J.C. et al. (Semparatide Investigators). PTHrP (1–34) analog, semparatide acetate (RS-66271) causes sustained increases BMD in spine in postmenopausal osteoporotic women: two randomised placebo-controlled trials // J. Bone and Miner. Res. Annual Meeting. Septem-ber 30-0ctober4 1999; St. Louis, Mo. Abstr. 1018.

49. Giangregorio L.M., Leslie W.D., Manitoba Bone Density Program. Time since prior fracture is a risk modifier for 10-year osteoporotic fractures. J. Bone Miner Res. 2010. V. 25 (6). Р. 1400–1405.

50. Goltzman D. Studies on the mechanisms of the skeletal anabolic action of endogenous and exogenous parathyroid hormone // Arch Biochem Biophys. 2008; 473: 218–224.

51. Goulet J.A., Senunas L.E., DeSilva G.L., Greenfield M.L. Autogenous iliac crest bone graft. Complications and functional assessment. Clin Orthop Relat Res. 1997; 339: 76–81. doi: 10.1097/00003086-199706000-00011).

52. Granjeiro J.M., Oliveira R.C., Bustos-Valenzuela J.C. [et al.]. Bone morphogenetic proteins: from structure to clinical use // Braz. J. Med. Biol. Res. 2005. Vol. 38. P. 1463–1473.

53. Greenspan S.L., Bone H.G. ettinger M.P. et al. Effect of recombinant human parathyroid hormone (1–84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial. Ann Intern Med. 2007; 146: 326–339.

54. Han S.L., Wan S.L. Effect of teriparatide on bone mineral density and fracture in postmenopausal osteoporosis: meta-analysis of randomised controlled trials. Int J Clin Pract. 2012; 66 (2): 199–209. doi: 10.1111/j.1742–1241.2011.02837.x.

55. Hansen S., Hauge E.M., Jensen J-E. B. et al. Differing effects of PTH 1–34, PTH 1–84, and zoledronic acid on bone microarchitecture and estimated strength in postmenopausal women with osteoporosis: an 18-month open-labeled observational study using HR-pQCT. J Bone Miner Res. 2013; 28: 736–745.

56. Hattersley G., Dean T., Corbin B.A., Bahar H., Gardella T.J. Binding selectivity of abaloparatide for PTH-type-1-receptor conformations and effects on downstream signaling. Endocrinology. 2016. V. 157. Р. 141–149. DOI: 10.1210/en.2015-1726.

57. Hegde V., Jo J.E., Andreopoulou P., Lane J.M. Effect of osteoporosis medications on fracture healing. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2016; 27 (3): 861–871. doi: 10.1007/s00198-015-3331-7.

58. Heras C., Sanchez-Salcedo S., Lozano D., Pena J., Esbrit P., Vallet-Regi M., Salinas A.J. Osteostatin potentiates the bioactivity of mesoporous glass scaffolds containing Zn2+ ions in human mesenchymal stem cells. Acta Biomater. 2019. V. 89. Р. 359–371. DOI: 10.1016/j.actbio.2019.03.033.

59. Hildreth B.E., Werbeck J.L., Thudi N.K., Deng X., Rosol T.J. Toribio R.E. PTHrP 1–141 and 1–86 increase in vitro bone formation. J. Surg. Res. 2010. V. 162. Р. e9–e17.

60. Hildreth B.E., Williams M.M., Dembek K.A. Hernon K.M., Rosol T.J., Toribio R.E. Engraftment and bone mass are enhanced by PTHrP 1–34 in ectopically transplanted vertebrae (vossicle model) and can be non-invasively monitored with bioluminescence and fluorescence imaging. Transgenic Research. 2015. V. 24 (6). Р. 955–969.

61. Hochberg M.C., Greenspan S., Wasnich R.D., Miller P., Thompson D.E., Ross P.D. Changes in bone density and turnover explain the reductions in incidence of nonvertebral fractures that occur during treatment with antiresorptive agents. J. Clin. Endocrinol Metab. 2002. V. 87. Р. 1586–1592.

62. Hochberg M.C., Ross P.D., Black D., Cummings S.R., Genant H.K., Nevitt M.C. et al. Larger increases in bone mineral density during alendronate therapy are associated with a lower risk of new vertebral fractures in women with postmenopausal osteoporosis. Arthritis Rheum. 1999. V. 42. Р. 1246–1254.

63. Hodsman A.B., Bauer D.C., Dempster D.W., Dian L., Hanley D.A., Harris S.T., Kendler D.L., McClung M.R., Miller P.D., Olszynski W.P., Orwoll E., Yuen C.K. Parathyroid Hormone and Teriparatide for the Treatment of Osteoporosis: A Review of the Evidence and Suggested Guidelines for Its Use, Endocrine Reviews. 2005; 26 (5): 688–703. DOI: 10.1210/er.2004-0006.

64. Hoppe A., Guldal N.S., Boccaccini A.R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011. V. 32. Р. 2757–2774. DOI: 10.1016/j.biomaterials.2011.01.004.

65. Horwitz M.J., Tedesco M.B., Garcia-Ocana A., Sereika S.M., Prebehala L., Bisello A., Hollis B.W., Gundberg C.M., Stewart A.F. et al. Parathyroid hormone-related protein for the treatment of postmenopausal osteoporosis: defining the maximal tolerable dose. J. Clin. Endocrinol Metab. 2010. V. 95 (3). Р. 1279–1287. DOI: 10.1210/jc.2009-0233.

66. Horwitz M.J., Tedesco M.B., Gundberg C. et al. Short-term, high-dose parathyroid hormone-related protein as a skeletal anabolic agent for the treatment of postmenopausal osteoporosis. J Clin Endocrinol Metab. 2003; 88 (2): 569–575.

67. Horwitz M.J., Tedesco M.B., Sereika S.M. et al. Safety and tolerability of subcutaneous PTHrP (1–36) in healthy human volunteers: a dose escalation study. Osteoporos Int. 2006; 17 (2): 225–30. doi: 10.1007/s00198-005-1976-3.

68. Jain A.P., Pundir S., Sharma A. Bone morphogenetic proteins: the anomalous molecules // Journal of Indian Society of Periodontol ogy. 2013. Vol. 17, № 5. P. 583–586.

69. Jiang Y., Zhao J.J., Mitlak B.H., Wang O., Genant H.K., Eriksen E.F. Recombinant human parathyroid hormone (1–34) [teriparatide] improves both cortical and cancellous bone structure. J. Bone Miner Res. 2003. V. 18. Р. 1932–1941.

70. Jorgensen N.R., Schwarz P. (2011) Effects of anti-osteoporosis medications on fracture healing. Curr Osteoporos Rep 9 (3): 149–155.

71. Knauerhase A., Willenberg H.S. Novel anti-osteoporotic drugs on the horizon. Z Rheumatol. 2016. V. 75 (5). Р. 466-470. DOI: 10.1007/s00393-016-0102-6.

72. Kostenuik P. On the evolution and contemporary roles of bone remodeling. in: R. Marcus, D. Feldman, D. Dempster, M. Luckey, J. Cauley (Eds.) Osteoporosis. Elsevier, New York, 2013. Р. 873–914.

73. Kostenuik P., Mirza F.M. Fracture healing physiology and the quest for ф б therapies for delayed healing and nonunion. J. Orthop. Res. 2017. V. 35 (2). Р. 213-223. DOI: 10.1002/jor.23460.

74. Kronenberg H.M. Developmental regulation of the growth plate. Nature. 2003. V. 423. Р. 332–336.

75. Langdahl B.L., Silverman S., Fujiwara S., Saag K., Napoli N., Soen S., Enomoto H., Melby T.E., Disch D.P., Marin F., Krege J.H. Real-world
effectiveness of teriparatide on fracture reduction in patients with osteoporosis and comorbidities or risk factors for fractures: Integrated analysis of 4 prospective observational studies. Bone. 2018. V. 116. Р. 58–66.

76. Lansdown A.B., Mirastschjski U., Stubbs N., Scanlon E., Agren M.S. Zinc in wound healing: Theoretical, experimental, and clinical aspects. Wound Repair Regen. 2007. V. 15. Р. 2–16. DOI: 10.1111/j.1524-475X.2006.00179.x.

77. Lanske B., Chandler H., Pierce A., Brown J., Ominsky M., Kostenuik P., Hattersley G. Abaloparatide, a PTH receptor agonist with homology to PTHrP, enhances callus bridging and biomechanical properties in rats with femoral fracture. Orthop Res. 2019. V. 37 (4). Р. 812-820. DOI: 10.1002/jor.2425.

78. Laurenti M., Cauda V. ZnO Nanostructures for Tissue Engineering Applications. Nanomaterials. 2017. V. 7. Р. 374. DOI: 10.3390/nano7110374.

79. Leder B.Z., O’Dea L.S., Zanchetta J.R., Kumar P., Banks K., McKay K., Lyttle C.R. Hattersley G (2015) Effects of abaloparatide, a human parathyroid hormone-related peptide analog, on bone mineral density in postmenopausal women with osteoporosis. J. Clin. Endocrinol Metab. 2015. V. 100.
Р. 697–706.

80. Lou S., Lv H., Li Z., Tang P., Wang Y. Parathyroid hormone analogues for fracture healing: protocol for a systematic review and meta-analysis of randomised controlled trials. BMJ Open 2018. V. 8. Р. e019291. DOI: 10.1136/ bmjopen-2017-019291.

81. Lozano D., De Castro L.F., Dapia S., Andrade-Zapata I., Manzarbeitia F., Alvarez-Arroyo M.V., Gomez-Barrena E., Esbrit P. Role of Parathyroid Hormone-Related Protein in the Decreased Osteoblast Function in Diabetes-Related Osteopenia. Endocrinology. 2009. V. 150. Р. 2027–2035. DOI: 10.1210/en.2008-1108.

82. Lozano D., Fernandez-de-Castro L., Portal-Nunez S., Lopez-Herradon A., Dapia S., Gomez-Barrena E., Esbrit P. The C-terminal fragment of parathyroid hormone-related peptide promotes bone formation in diabetic mice with low-turnover osteopenia. Br. J. Pharmacol. 2011. V. 162. Р. 1424–1438. DOI: 10.1111/j.1476-5381.2010.01155.x.

83. Lozano D., Manzano M., Doadrio J.C., Salinas A.J., Vallet-Regi M., Gomez-Barrena E., Esbrit P. Osteostatin-loaded bioceramics stimulate osteoblastic growth and differentiation. Acta Biomater. 2010. V. 6. Р. 797–803. DOI: 10.1016/j.actbio.2009.08.033.

84. Lozano D., Sanchez-Salcedo S., Portal-Nunez S., Vila M., Lopez-Herradon A., Ardura J.A., Mulero F., Gomez-Barrena E., Vallet-Regi M., Esbrit P. Parathyroid hormone-related protein (107–111) improves the bone regeneration potential of gelatin–glutaraldehyde biopolymer-coated hydroxyapatite. Acta Biomater. 2014. V. 10. Р. 3307–3316. DOI: 10.1016/j.actbio.2014.03.025.

85. Lozano D., Trejo C.G., Gomez-Barrena E., Manzano M., Doadrio J.C., Salinas A.J., Vallet-Regi M., Garcia-Honduvilla N., Esbrit P., Bujan J. Osteostatin-loaded onto mesoporous ceramics improves the early phase of bone regeneration in a rabbit osteopenia model. Acta Biomater. 2012. V. 8. Р. 2317–2323. DOI: 10.1016/j.actbio.2012.03.014.

86. Maeda A., Okazaki M., Baron D.M., Dean T., Khatri A., Mahon M., Segawa H., Abou-Samra A.B., Juppner H., Bloch K.D. et al. Critical role of parathyroid hormone (PTH) receptor-1 phosphorylation in regulating acute responses to PTH. Proc Natl Acad Sci USA. 2013; 110: 5864–5869.

87. Marsell R., Einhorn T.A. The biology of fracture healing. Injury. 2011. V. 42. Р. 551–555.

88. Martin T.J. Parathyroid Hormone-Related Protein, Its Regulation of Cartilage and Bone Development, and Role in Treating Bone Diseases. Physiological Reviews. 2016. V. 96 (3). Р. 831–871.

89. Martin T.J., Seeman E. Abaloparatide Is an Anabolic, but Does It Spare Resorption? J. Bone Miner Res. 2017. V. 32 (1). Р. 11–16.

90. Maycas M., McAndrews K.A., Sato A.Y., Pellegrini G.G., Brown D.M., Allen M.R., Plotkin L.I., Gortazar A.R., Esbrit P., Bellido T. PTHrP-Derived Peptides Restore Bone Mass and Strength in Diabetic Mice: Additive Effect of Mechanical Loading. J. Bone Miner Res. 2017. V. 32. Р. 486-497. DOI: 10.1002/jbmr.3007.

91. Miao D., He B., Jiang Y., Kobayashi T., Soroceanu M.A., Zhao J., Su H., Tong X., Amizuka N., Gupta A., Genant H.K., Kronenberg H.M., Goltzman D., Karaplis A.C. Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1–34. J. Clin. Invest. 2005. V. 115 (9). Р. 2402–2411.

92. Miao D., Li J., Xue Y., Su H., Karaplis A.C., Goltzman D. Parathyroid hormone-related peptide is required for increased trabecular bone volume in parathyroid hormone-null mice. Endocrinology. 2004. V. 145. Р. 3554–3562.

93. Migliore A., Broccoli S., Massafra U. et al. Mixed-treatment comparison of anabolic (teriparatide and PTH 1–84) therapies in women with severe osteoporosis. Curr Med Res Opin. 2012; 28: 467–473.

94. Miller P.D., Hattersley G., Riis B.J. Williams G.C., Lau E., Russo L.A., Alexandersen P., Zerbini C.A., Hu M.Y., Harris A.G., Fitzpatrick L.A., Cosman F., Christiansen C. Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA. 2016. V. 316 (7). Р. 722-733.

95. Moreira C., Fitzpatrick L., Wang Y., Recker R. Effects of abaloparatide-SC (BA058) on bone histology and histomorphometry: the ACTIVE phase 3 trial. Bone. 2017. V. 97. Р. 314-319. DOI: 10.1016/j.bone.2016.11.004.

96. Moukoko D., Pourquier D., Genovesio C., Thezenas S., Chabrand P., Roffino S., Pithioux M. Granulocyte-colony stimulating factor enhances bone fracture healing. Clinical Biomechanics. 2018. V. 58. Р. 62–68. DOI: 10.1016/j.clinbiomech.2018.07.010.

97. Neer R.M., Arnaud C.D., Zanchetta J.R. et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001; 344 (19): 1434–41. doi: 10.1056/NEJM200105103441904.

98. Ning, Z., Tan, B., Chen, B., Lau, D.S.A., Wong, T.M., Sun, T., Peng, S., Li, Z., Lu, W.W., Precisely Controlled Delivery of Abaloparatide through Injectable Hydrogel to Promote Bone Regeneration. Macromol. Biosci. 2019, 1900020. doi.org/10.1002/mabi.201900020.

99. Okazaki K., Jingushi S., Ikenoue T., Urabe, K., Sakai H., Iwamoto Y. Expression of parathyroid hormone-related peptide and insulin-like growth factor I during rat fracture healing. J. Orthop. Res. 2003; 21: 511–520.

100. Okazaki M., Ferrandon S., Vilardaga J.P., Bouxsein M.L., Potts J.T. Jr., Gardella T.J. Prolonged signaling at the parathyroid hormone receptor by peptide ligands targeted to a specific receptor conformation. Proc Natl Acad Sci U S A. 2008 Oct 28; 105 (43): 16525-16530. doi: 10.1073/pnas.0808750105.

101. Ominsky M.S., Li X., Asuncion F.J., Barrero M., Warmington K.S., Dwyer D., Stolina M., Geng Z., Grisanti M., Tan H., Corbin T., McCabe J., Simonet W.S., Ke H.Z., Kostenuik P.J. RANKL Inhibition with Osteoprotegerin Increases Bone Strength by Improving Cortical and Trabecular bone Architecture in Ovariectomized Rats. J Bone Miner Res. 2008. V. 23. Р. 672-682. DOI: 10.1359/jbmr.080109.

102. Peichl P., Holzer L., Maier R., Holzer G. Parathyroid Hormone 1–84 Accelerates Fracture-Healing in Pubic Bones of Elderly Osteoporotic Women. The Journal of Bone & Joint Surgery. 2011. V. 93 (17). Р. 1583–1587. DOI: 10.2106/JBJS.J.01379.

103. Perez R., Sanchez-Salcedo S., Lozano D., Heras C., Esbrit P., Vallet-Regi M., Salinas A.J. Osteogenic Effect of ZnO-Mesoporous Glasses Loaded with Osteostatin. Nanomaterials (Basel). 2018. V. 8 (8). Р. 592. DOI: 10.3390/nano8080592.

104. Pettway G.J., McCauley L.K. Ossicle and vossicle implant model systems. Methods Mol. Biol. 2008. V. 455. Р. 101–110.

105. Plotkin H., Gundberg C., Mitnick M., Stewart A.F. Dissociation of bone formation from resorption during 2-week treatment with human parathyroid hormone-related peptide-(1–36) in humans: potential as an anabolic therapy for osteoporosis // J Clin Endocrinol Metab. 1998; Aug; 83 (8): 2786-91.

106. Polyzos S.A., Makras P., Efstathiadou Z., Anastasilakis A.D. Investigational parathyroid hormone receptor analogs for the treatment of osteoporosis. Expert OpinInvestig Drugs. 2015. V. 2. Р. 145–157.

107. Quinlan E., Thompson E.M., Matsiko A., O’Brien F.J., Lopez-Noriega A. Functionalization of a Collagen–Hydroxyapatite Scaffold with Osteostatin to Facilitate Enhanced Bone Regeneration. Adv. Healthcare Mater. 2015. V. 4. Р. 2649-2656. DOI: 10.1002/adhm.201500439.

108. Raposo G., Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell. Biol. 2013. V. 200 (4). Р. 373-83.

109. Reginster J.Y., Hattersley G., Williams G.C., Hu M.Y., Fitzpatrick L.A., Lewiecki E.M. Abaloparatide is an Effective Treatment Option for Postmenopausal Osteoporosis: Review of the Number Needed to Treat Compared with Teriparatide. Calcif. Tissue Int. 2018. V. 103. Р. 540–545.

110. Ren Y., Liu B., Feng Y., Shu L., Cao X., Karaplis A., Goltzman D., Miao D. Endogenous PTH deficiency impairs fracture healing and impedes the fracture-healing efficacy of exogenous pth (1–34) PLoS ONE. 2011. V. 6.
Р. e23060. DOI: 10.1371/journal.pone.0023060.

111. Richard V., Luchin A., Brena R.M. et al. Quantitative evaluation of alternative promoter us-age and 3splice variants for parathyroid hormone-related protein by real-time reverse transcription-PCR assay // Clin Chem. 2003; 49: 1398–1402.

112. Rihani-Basharat S., Lewinson D. PTHrP (107–111) Inhibits In Vivo Resorption that was Stimulated by PTHrP (1–34) When Applied Intermittently to Neonatal Mice. Calcif. Tissue Int. 1997. V. 61. Р. 426–428. DOI: 10.1007/s002239900359.

113. Roberts S.J., Ke H.Z. Anabolic Strategies to Augment Bone Fracture Healing, Current Osteoporosis Reports. 2018. V. 16 (1–2). Р. 289-298. DOI: 10.1007/s11914-018-0440-1.

114. Russow G., Jahn D., Appelt J., Mardian S., Tsitsilonis S., Keller J. Anabolic Therapies in Osteoporosis and Bone Regeneration. Int. J. Mol. Sci. 2019. V. 20. Р. 83. DOI: 10.3390/ijms20010083.

115. Saeh J., Pais D., Hamad E. et al. Clinical development of an optimized abaloparatide transdermal patch. In: 38th annual meeting of the American Society for Bone and Mineral Research. 2016. [abstract № LB-1162].

116. Salinas A.J., Esbrit P., Vallet-Regi M. A tissue engineering approach based on the use of bioceramics for bone repair. Biomater. Sci. 2013. V. 1. Р. 40–51. DOI: 10.1039/C2BM00071G.

117. Sanchez-Salcedo S., Shruti S., Salinas A.J., Malavasi G., Menabue L., Vallet-Regi M. In vitro antibacterial capacity and cytocompatibility of SiO2–CaO–P2O5 meso-macroporous glass scaffolds enriched with Z№ J. Mater. Chem. B. 2014. V. 2. Р. 4836–4847. DOI: 10.1039/C4TB00403E.

118. Schwartz Z., Somers A., Mellonig J.T. et al. Addition of human recombinant bone morphogenetic protein-2 to inactive commercial human demineralized freezedried bone allograft makes an effective composite bone inductive implant material //J. Periodontol. – 1998. – Vol. 69, № 12. – P. 1337–1345.

119. Simpson A.H.R.W., Mills L., Noble B. The role of growth factors and related agents in accelerating fracture healing // JBJS (Br). 2006. Vol. 88, № 6. P. 701–705.

120. Stewart A.F., Cain R.L., Burr D.B., Jacob D., Turner C.H., Hock J.M., Drezner M. K. Six-Month Daily Administration of Parathyroid Hormone and Parathyroid Hormone–Related Protein Peptides to Adult Ovariectomized Rats Markedly Enhances Bone Mass and Biomechanical Properties: A Comparison of Human Parathyroid Hormone 1–34, Parathyroid Hormone-Related Protein 1–36, and SDZ-Parathyroid Hormone 893. J. Bone Miner Res. 2000. V. 15. Р. 1517–1525. DOI: 10.1359/jbmr.2000.15.8.1517.

121. Tabatabaei-Malazy O., Salari P., Khashayar P., Larijani B. New horizons in treatment of osteoporosis. DARU Journal of Pharmaceutical Sciences. 2017. V. 25. Р. 2. DOI: 10.1186/s40199-017-0167-z.

122. Tagil M., McDonald M.M., Morse A., Peacock L., Mikulec K., Amanat N., Godfrey C., Littl D.G. Intermittent PTH(1–34) does not increase union rates in open rat femoral fractures and exhibits attenuated anabolic effects compared to closed fractures. Bone. 2010. V. 46. Р. 852–859.

123. Takeuchi Y. Development of hPTHrP (1–36) as an anabolic therapeutic agent for osteoporosis // Clin Calcium. 2011; 21 (1): 28-32.

124. Trejo C.G., Lozano D., Manzano M., Doadrio J.C., Salinas A.J., Dapia S., Gomez-Barrena E., Vallet-Regi M., Garcia-Honduvilla N., Bujan J. et al. The osteoinductive properties of mesoporous silicate coated with osteostatin in a rabbit femur cavity defect model. Biomaterials. 2010. V. 31. Р. 8564–8573. DOI: 10.1016/j.biomaterials.2010.07.103.

125. Tseng S.S., Lee M.A., Reddi A.H. Nonunions and the potential of stem cells in fracture-healing. J. Bone Jt. Surg. Am. 2008. V. 90 (Suppl. 1). Р. 92–98.

126. Urist M.R. Bone: formation by autoinduction // Sciens. 1965. Vol. 150. P. 893–899.

127. Van der Stok J., Lozano D., Chai Y.C., Amin Yavari S., Bastidas Coral A.P., Verhaar J.A., Gomez-Barrena E., Schrooten J., Jahr H., Zadpoor A.A., Esbrit P., Weinans H. Osteostatin-coated porous titanium can improve early bone regeneration of cortical bone defects in rats. Tissue Eng Part A. 2015. V. 21 (9–10). Р. 1495-506.

128. Van Geel T.A., Huntjens K.M., van den Bergh J.P. et al. Timing of subsequent fractures after an initial fracture. Curr Osteoporos Rep. 2010; 8 (3): 118–22. doi: 10.1007/s11914-010-0023-2.

129. Varela A., Chouinard L., Lesage E., Guldberg R., Smith S.Y., Kostenuik P.J., Hattersley G. One year of abaloparatide, a selective peptide activator of the PTH1 receptor, increased bone mass and strength in ovariectomized rats. Bone. 2017a. V. 95. Р. 143–150.

130. Varela A., Chouinard L., Lesage E., Smith S.Y., Hattersley G. One year of abaloparatide, a selective activator of the PTH1 receptor, increased bone formation and bone mass in osteopenic ovariectomized rats without increasing bone resorption. J. Bone Miner Res. 2017b. V. 32 (1). Р. 24–33.

131. Wang M., Nasiri A.R., Broadus A.E., Tommasini S.M. Periosteal PTHrP Regulates Cortical Bone Remodeling During Fracture Healing. Bone. 2015. V. 81. Р. 104–111. DOI: 10.1016/j.bone.2015.07.008.

132. Wang Y., Fang X., Wang C., Ding C., Lin H., Liu A., Wang L., Cao Y. Exogenous PTHrP Repairs the Damaged Fracture Healing of PTHrP +/– Mice and Accelerates Fracture Healing of Wild Mice. Int. J. Mol. Sci. 2017. V. 18 (2). Р. 337. DOI: 10.3390/ijms18020337.

133. Wang Y.H., Qiu Y., Han X.D., Xiong J., Chen Y.X., Shi H.F., Karaplis A. Haploinsufficiency of endogenous parathyroid hormone-related peptide impairs bone fracture healing. Clin. Exp. Pharmacol. Physiol. 2013. V. 40. Р. 715–723.

134. Wojda S.J., Donahue S.W. Parathyroid hormone for bone regeneration. J. Orthop. Res. 2018. V. 36. Р. 2586–2594.

135. Wozney J.M., Rosen V. Bone morphogenetic protein and bone morphogenetic.

136. Xu J., Rong H., Ji H. Wang D., Wang J., Zhang W., Zhang Y. Effects of different dosages of parathyroid hormone-related protein 1–34 on the bone metabolism of the ovariectomized rat model of osteoporosis. Calcif Tissue Int. 2013. V. 93. Р. 276–287. DOI: 10.1007/s00223-013-9755-1.

137. Xue Y., Karaplis A.C., Hendy G.N., Goltzman D., Miao D. Genetic models show that parathyroid hormone and 1,25-dihydroxyvitamin D3 play distinct and synergistic roles in postnatal mineral ion homeostasis and skeletal development. Hum. Mol. Genet. 2005. V. 14. Р. 1515–1528.

138. Yan X., Yu C., Zhou X., Tang J., Zhao D. Highly Ordered Mesoporous Bioactive Glasses with Superior in vitro Bone-Forming Bioactivities. Chem. Int. Ed. 2004. V. 43. Р. 5980–5984. DOI: 10.1002/anie.200460598.

139. Yu M., D’Amelio P., Tyagi A.M., Vaccaro C., Li, J.Y., Hsu E; Buondonno I., Sassi F., Adams J., Weitzmann M.N. et al. Regulatory T cells are expanded by Teriparatide treatment in humans and mediate intermittent PTH-induced bone anabolism in mice. EMBO Rep. 2018. V. 19. Р. 156–171.

140. Zhang W., Chen J., Tao J. Hu C., Ji J., Ouyang H.W. Optimal Intra-articular Injection of Parathyroid Hormone-Related Protein Effectively Promotes Osteochondral Defects Repair. In: Goh J. (eds) The 15th International Conference on Biomedical Engineering. IFMBE Proceedings, 2014; 43: 40-43. doi.org/10.1007/978-3–319-02913-9_11.

141. Zheng K., Lu M., Rutkowski B., Dai X., Yang Y., Taccardi N., Stachewicz U., Czyrska-Filemonowicz A., Huser N., Boccaccini A.R. ZnO quantum dots modified bioactive glass nanoparticles with pH-sensitive release of Zn ions, fluorescence, antibacterial and osteogenic properties. J. Mater. Chem. B. 2016; 4: 7936–7949. DOI: 10.1039/C6TB02053D.

142. Zhu Q., Zhou X., Zhu M., Wang Q., Goltzman D., Karapli A., Miao D. Endogenous parathyroid hormone-related protein compensates for the absence of parathyroid hormone in promoting bone accrual in vivo in a model of bone marrow ablation. J. Bone Miner. Res. 2013; 28: 1898–1911.

143. Zimmermann G., Wagner C., Schmeckenbecher K., Wentzensen A., Moghaddam A. Treatment of tibial shaft non-unions: bone morphogenetic proteins versus autologous bone graft. Injury. 2009; 40 (Suppl 3): S50–S53. doi: 10.1016/S0020-1383 (09) 70012-9.

144. Бизенкова М.Н., Курзанов А.Н. Остеотропные эффекты паратгормон-родственного белка // Современные проблемы науки и образования. 2017. № 2. [Электронный ресурс]. URL: http://science-education.ru/ru/article/view?id=26328 (дата обращения: 01.08.2019).

145. Десятниченко К.С., Курдюмов С.Г. Тенденции в конструировании тканеинженерных систем для остеопластики // Клеточная трансплантология и тканевая инженерия. 2008; 3 (1): 62-68.

146. Ирьянов Ю.М., Кирьянов Н.А. Репаративное костеобразование и ангиогенез в условиях воздействия низкоинтенсивного электромагнитного излучения крайне высокой частоты // Вестник РАМН. 2015; 70 (3): 334-340. DOI: 10.15690/vramn.v70i3.1330.

147. Курзанов А.Н., Ледванов М.Ю., Бизенкова М.Н. Экспериментальное обоснование использования остеотропных эффектов паратгормон-родственного протеина в репаративном остеогенезе // Современные проблемы науки и образования. – 2019. – № 5; URL: http://science-education.ru/ru/article/view?id=29156 (дата обращения: 22.02.2020).

148. Марков Д.А., Ван Кай, Левченко К.К. Стимуляция репаративного остеогенеза // Саратовский научно-медицинский журнал. 2007; 3 (17): 79-84.

149. Оноприенко Г.А., Волошин В.П. Современные концепции процессов физиологического и репаративного остеогенеза // Альманах клинической медицины. 2017; 45 (2): 79-93. DOI: 10.18786/2072-0505-2017-45-2-79-79.

150. Попков А.В., Попков Д.А., Ирьянов Ю.М., Кононович Н.А., Горбач Е.Н., Твердохлебов С.И. Cтимуляция репаративной регенерации костной ткани при диафизарных переломах (экспериментальное исследование) // Международный журнал прикладных и фундаментальных исследований. 2014; 9: 82-88.

 


Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1,674