Научная электронная библиотека
Монографии, изданные в издательстве Российской Академии Естествознания

1.3. Способы проецирования

Проекцией точки А на плоскость проекций p1 называется точка А1 пересечения проецирующей прямой ℓ с плоскостью проекций p1, проходящей через точку А (рис. 1.1):

Проекция любой геометрической фигуры есть множество проекций всех ее точек. Направление проецирующих прямых ℓ и положение плоскостей p1 определяют аппарат проецирования.

Центральным проецированием называется такое проецирование, при котором все проецирующие лучи исходят из одной точки S - центра проецирования (рис. 1.2).

Параллельным проецированием называют такое проецирование, при котором все проецирующие прямые параллельны заданному направлению S
(рис. 1.3).

Параллельное проецирование представляет собой частный случай центрального проецирования, когда точка S находится на бесконечно большом расстоянии от плоскости проекций p1.

При заданном аппарате проецирования каждой точке пространства соответствует одна и только одна точка на плоскости проекций.

p

Рис. 1.1. Проекция точки А а плоскость проекций π1

p

Рис. 1.2. Пример центральногопроецирования

p

Одна проекция точки не определяет положения этой точки в пространстве. Действительно, проекции А1 может соответствовать бесчисленное множество точек А', А'', ..., расположенных на проецирующей прямой ℓ (рис. 1.4).

Для определения положения точки в пространстве при любом аппарате проецирования необходимо иметь две ее проекции, полученных при двух различных направлениях проецирования (или при двух различных центрах проецирования).

Так, из рис. 1.5 видно, что две проекции точки А (А1 и А2), полученные при двух направлениях проецирования S1 и S2 , определяют единственным образом положение самой точки А в пространстве - как пересечение проецирующих прямых ℓ1 и ℓ2, проведенных из проекций А1 и А2 параллельно направлениям проецирования S1 и S2.

p

p

Рис. 1.5. Определение положения точки А в пространстве


Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1,674