Поверхность называется развертывающейся, если она путем изгибания может быть совмещена с плоскостью без образования складок и разрывов. При этом исходим из представления поверхности как гибкой, но нерастяжимой и несжимаемой пленки. Свойством развертываемости обладают многогранные поверхности и кривые линейчатые поверхности с ребром возврата: торсы, конические и цилиндрические.
Линейчатые косые и нелинейчатые поверхности этим свойством не обладают. Существуют различные способы построения их условных разверток при помощи аппроксимации.
Плоская фигура, полученная в результате совмещения поверхности с плоскостью, называется разверткой (рис. 9.1). Между поверхностью и ее разверткой существует взаимно-однозначное точечное соответствие (точке А на поверхности соответствует точка А' на развертке, и наоборот), обладающее следующими свойствами (рис. 9.1):
1) длина участка АВ линии l на поверхности равна длине участка А'В' соответствующей ей линии l на развертке;
2) угол a между кривыми m и n на поверхности равен углу a' между соответствующими им кривыми m' и n' на развертке (углом между кривыми называется угол между касательными к ним в точке пересечения);
3) площадь отсека F поверхности равна площади соответствующего ему отсека F' развертки.
В дифференциальной геометрии доказывается, что второе и третье свойства являются следствием первого. Первое свойство вытекает из представления поверхности как гибкой, но нерастяжимой и несжимаемой пленки.
Из рассмотренных свойств следует:
1) прямой линии (a) на поверхности соответствует прямая (а') на развертке;
2) прямым, параллельным (' || b) на поверхности, соответствуют прямые, параллельные (a' || b') на развертке.
Однако оба указанных свойства обратной силы не имеют, т. е. не всякой прямой на развертке соответствует прямая на поверхности. Примерами этого могут служить цилиндрическая винтовая линия, параллели поверхности вращения.
Если кривой линии, принадлежащей поверхности, соответствует прямая на развертке, то эта кривая линия является геодезической для данной поверхности.
Геодезической называется линия, принадлежащая поверхности и соединяющая кратчайшим путем две точки, также принадлежащие поверхности.